xgboost/R-package/R/xgb.cv.R
2016-06-09 02:46:13 -05:00

289 lines
11 KiB
R

#' Cross Validation
#'
#' The cross valudation function of xgboost
#'
#' @param params the list of parameters. Commonly used ones are:
#' \itemize{
#' \item \code{objective} objective function, common ones are
#' \itemize{
#' \item \code{reg:linear} linear regression
#' \item \code{binary:logistic} logistic regression for classification
#' }
#' \item \code{eta} step size of each boosting step
#' \item \code{max.depth} maximum depth of the tree
#' \item \code{nthread} number of thread used in training, if not set, all threads are used
#' }
#'
#' See \link{xgb.train} for further details.
#' See also demo/ for walkthrough example in R.
#' @param data takes an \code{xgb.DMatrix} or \code{Matrix} as the input.
#' @param nrounds the max number of iterations
#' @param nfold the original dataset is randomly partitioned into \code{nfold} equal size subsamples.
#' @param label option field, when data is \code{Matrix}
#' @param missing Missing is only used when input is dense matrix, pick a float
#' value that represents missing value. Sometime a data use 0 or other extreme value to represents missing values.
#' @param prediction A logical value indicating whether to return the prediction vector.
#' @param showsd \code{boolean}, whether show standard deviation of cross validation
#' @param metrics, list of evaluation metrics to be used in cross validation,
#' when it is not specified, the evaluation metric is chosen according to objective function.
#' Possible options are:
#' \itemize{
#' \item \code{error} binary classification error rate
#' \item \code{rmse} Rooted mean square error
#' \item \code{logloss} negative log-likelihood function
#' \item \code{auc} Area under curve
#' \item \code{merror} Exact matching error, used to evaluate multi-class classification
#' }
#' @param obj customized objective function. Returns gradient and second order
#' gradient with given prediction and dtrain.
#' @param feval custimized evaluation function. Returns
#' \code{list(metric='metric-name', value='metric-value')} with given
#' prediction and dtrain.
#' @param stratified \code{boolean} whether sampling of folds should be stratified by the values of labels in \code{data}
#' @param folds \code{list} provides a possibility of using a list of pre-defined CV folds (each element must be a vector of fold's indices).
#' If folds are supplied, the nfold and stratified parameters would be ignored.
#' @param verbose \code{boolean}, print the statistics during the process
#' @param print.every.n Print every N progress messages when \code{verbose>0}. Default is 1 which means all messages are printed.
#' @param early.stop.round If \code{NULL}, the early stopping function is not triggered.
#' If set to an integer \code{k}, training with a validation set will stop if the performance
#' doesn't improve for \code{k} rounds.
#' @param maximize If \code{feval} and \code{early.stop.round} are set, then \code{maximize} must be set as well.
#' \code{maximize=TRUE} means the larger the evaluation score the better.
#'
#' @param ... other parameters to pass to \code{params}.
#'
#' @return
#' TODO: update this...
#'
#' If \code{prediction = TRUE}, a list with the following elements is returned:
#' \itemize{
#' \item \code{dt} a \code{data.table} with each mean and standard deviation stat for training set and test set
#' \item \code{pred} an array or matrix (for multiclass classification) with predictions for each CV-fold for the model having been trained on the data in all other folds.
#' }
#'
#' If \code{prediction = FALSE}, just a \code{data.table} with each mean and standard deviation stat for training set and test set is returned.
#'
#' @details
#' The original sample is randomly partitioned into \code{nfold} equal size subsamples.
#'
#' Of the \code{nfold} subsamples, a single subsample is retained as the validation data for testing the model, and the remaining \code{nfold - 1} subsamples are used as training data.
#'
#' The cross-validation process is then repeated \code{nrounds} times, with each of the \code{nfold} subsamples used exactly once as the validation data.
#'
#' All observations are used for both training and validation.
#'
#' Adapted from \url{http://en.wikipedia.org/wiki/Cross-validation_\%28statistics\%29#k-fold_cross-validation}
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label)
#' history <- xgb.cv(data = dtrain, nround=3, nthread = 2, nfold = 5, metrics=list("rmse","auc"),
#' max.depth =3, eta = 1, objective = "binary:logistic")
#' print(history)
#'
#' @export
xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing = NA,
prediction = FALSE, showsd = TRUE, metrics=list(),
obj = NULL, feval = NULL, stratified = TRUE, folds = NULL,
verbose = TRUE, print.every.n=1L,
early.stop.round = NULL, maximize = NULL, callbacks = list(), ...) {
#strategy <- match.arg(strategy)
params <- check.params(params, ...)
# TODO: should we deprecate the redundant 'metrics' parameter?
for (m in metrics)
params <- c(params, list("eval_metric" = m))
check.custom.obj()
check.custom.eval()
#if (is.null(params[['eval_metric']]) && is.null(feval))
# stop("Either 'eval_metric' or 'feval' must be provided for CV")
# Labels
if (class(data) == 'xgb.DMatrix')
labels <- getinfo(data, 'label')
if (is.null(labels))
stop("Labels must be provided for CV either through xgb.DMatrix, or through 'label=' when 'data' is matrix")
# CV folds
if(!is.null(folds)) {
if(class(folds) != "list" || length(folds) < 2)
stop("'folds' must be a list with 2 or more elements that are vectors of indices for each CV-fold")
nfold <- length(folds)
} else {
if (nfold <= 1)
stop("'nfold' must be > 1")
folds <- generate.cv.folds(nfold, nrow(data), stratified, label, params)
}
# Potential TODO: sequential CV
#if (strategy == 'sequential')
# stop('Sequential CV strategy is not yet implemented')
# verbosity & evaluation printing callback:
params <- c(params, list(silent = 1))
print.every.n <- max( as.integer(print.every.n), 1L)
if (!has.callbacks(callbacks, 'cb.print_evaluation') && verbose)
callbacks <- c(callbacks, cb.print_evaluation(print.every.n))
# evaluation log callback: always is on in CV
evaluation_log <- list()
if (!has.callbacks(callbacks, 'cb.log_evaluation'))
callbacks <- c(callbacks, cb.log_evaluation())
# Early stopping callback
stop_condition <- FALSE
if (!is.null(early.stop.round) &&
!has.callbacks(callbacks, 'cb.early_stop'))
callbacks <- c(callbacks, cb.early_stop(early.stop.round, maximize=maximize, verbose=verbose))
# Sort the callbacks into categories
names(callbacks) <- callback.names(callbacks)
cb <- categorize.callbacks(callbacks)
# create the booster-folds
dall <- xgb.get.DMatrix(data, label, missing)
bst_folds <- lapply(1:length(folds), function(k) {
dtest <- slice(dall, folds[[k]])
dtrain <- slice(dall, unlist(folds[-k]))
bst <- xgb.Booster(params, list(dtrain, dtest))
list(dtrain=dtrain, bst=bst, watchlist=list(train=dtrain, test=dtest), index=folds[[k]])
})
num_class <- max(as.numeric(NVL(params[['num_class']], 1)), 1)
num_parallel_tree <- max(as.numeric(NVL(params[['num_parallel_tree']], 1)), 1)
begin_iteration <- 1
end_iteration <- nrounds
# synchronous CV boosting: run CV folds' models within each iteration
for (iteration in begin_iteration:end_iteration) {
for (f in cb$pre_iter) f()
msg <- lapply(bst_folds, function(fd) {
xgb.iter.update(fd$bst, fd$dtrain, iteration - 1, obj)
xgb.iter.eval(fd$bst, fd$watchlist, iteration - 1, feval)
})
msg <- simplify2array(msg)
bst_evaluation <- rowMeans(msg)
bst_evaluation_err <- sqrt(rowMeans(msg^2) - bst_evaluation^2)
for (f in cb$post_iter) f()
if (stop_condition) break
}
for (f in cb$finalize) f(finalize=TRUE)
# the CV result
ret <- list(
call = match.call(),
params = params,
callbacks = callbacks,
evaluation_log = evaluation_log,
nboost = end_iteration,
ntree = end_iteration * num_parallel_tree * num_class
)
if (!is.null(attr(bst_folds, 'best_iteration'))) {
ret$best_iteration <- attr(bst_folds, 'best_iteration')
ret$best_ntreelimit <- attr(bst_folds, 'best_ntreelimit')
}
ret$folds <- folds
# TODO: should making prediction go
# a. into a callback?
# b. return folds' models, and have a separate method for predictions?
if (prediction) {
ret$pred <- ifelse(num_class > 1,
matrix(0, nrow(data), num_class),
rep(0, nrow(data)))
ntreelimit <- NVL(ret$best_ntreelimit, ret$ntree)
for (fd in bst_folds) {
pred <- predict(fd$bst, fd$watchlist[[2]], ntreelimit = ntreelimit)
if (is.matrix(ret$pred))
ret$pred[fd$index,] <- t(matrix(pred, num_class, length(fd$index)))
else
ret$pred[fd$index] <- pred
}
ret$bst <- lapply(bst_folds, function(x) {
xgb.Booster.check(xgb.handleToBooster(x$bst), saveraw = TRUE)
})
}
class(ret) <- 'xgb.cv.synchronous'
invisible(ret)
}
#' Print xgb.cv result
#'
#' Prints formatted results of \code{xgb.cv}.
#'
#' @param x an \code{xgb.cv.synchronous} object
#' @param verbose whether to print detailed data
#' @param ... passed to \code{data.table.print}
#'
#' @details
#' When not verbose, it would only print the evaluation results,
#' including the best iteration (when available).
#'
#' @examples
#' data(agaricus.train, package='xgboost')
#' train <- agaricus.train
#' cv <- xgbcv(data = train$data, label = train$label, max.depth = 2,
#' eta = 1, nthread = 2, nround = 2, objective = "binary:logistic")
#' print(cv)
#' print(cv, verbose=TRUE)
#'
#' @rdname print.xgb.cv
#' @export
print.xgb.cv.synchronous <- function(x, verbose=FALSE, ...) {
cat('##### xgb.cv ', length(x$folds), '-folds\n', sep='')
if (verbose) {
if (!is.null(x$call)) {
cat('call:\n ')
print(x$call)
}
if (!is.null(x$params)) {
cat('params (as set within xgb.cv):\n')
cat( ' ',
paste(names(x$params),
paste0('"', unlist(x$params), '"'),
sep=' = ', collapse=', '), '\n', sep='')
}
if (!is.null(x$callbacks) && length(x$callbacks) > 0) {
cat('callbacks:\n')
lapply(callback.calls(x$callbacks), function(x) {
cat(' ')
print(x)
})
}
for (n in c('nboost', 'ntree', 'best_iteration', 'best_ntreelimit')) {
if (is.null(x[[n]]))
next
cat(n, ': ', x[[n]], '\n', sep='')
}
cat('nfolds: ', length(x$folds), '\n', sep='')
if (!is.null(x$pred)) {
cat('pred:\n')
str(x$pred)
}
}
if (verbose)
cat('evaluation_log:\n')
print(x$evaluation_log, row.names = FALSE, ...)
if (!is.null(x$best_iteration)) {
cat('Best iteration:\n')
print(x$evaluation_log[x$best_iteration], row.names = FALSE, ...)
}
invisible(x)
}