296 lines
12 KiB
Python

from __future__ import print_function
#pylint: skip-file
import sys
sys.path.append("../../tests/python")
import xgboost as xgb
import testing as tm
import numpy as np
import unittest
rng = np.random.RandomState(1994)
dpath = '../../demo/data/'
ag_dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
ag_dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
def eprint(*args, **kwargs):
print(*args, file=sys.stderr, **kwargs)
print(*args, file=sys.stdout, **kwargs)
class TestGPU(unittest.TestCase):
def test_grow_gpu(self):
tm._skip_if_no_sklearn()
from sklearn.datasets import load_digits
try:
from sklearn.model_selection import train_test_split
except:
from sklearn.cross_validation import train_test_split
ag_param = {'max_depth': 2,
'tree_method': 'exact',
'nthread': 1,
'eta': 1,
'silent': 1,
'objective': 'binary:logistic',
'eval_metric': 'auc'}
ag_param2 = {'max_depth': 2,
'updater': 'grow_gpu',
'eta': 1,
'silent': 1,
'objective': 'binary:logistic',
'eval_metric': 'auc'}
ag_res = {}
ag_res2 = {}
num_rounds = 10
xgb.train(ag_param, ag_dtrain, num_rounds, [(ag_dtrain, 'train'), (ag_dtest, 'test')],
evals_result=ag_res)
xgb.train(ag_param2, ag_dtrain, num_rounds, [(ag_dtrain, 'train'), (ag_dtest, 'test')],
evals_result=ag_res2)
assert ag_res['train']['auc'] == ag_res2['train']['auc']
assert ag_res['test']['auc'] == ag_res2['test']['auc']
digits = load_digits(2)
X = digits['data']
y = digits['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
dtrain = xgb.DMatrix(X_train, y_train)
dtest = xgb.DMatrix(X_test, y_test)
param = {'objective': 'binary:logistic',
'updater': 'grow_gpu',
'max_depth': 3,
'eval_metric': 'auc'}
res = {}
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train'), (dtest, 'test')],
evals_result=res)
assert self.non_decreasing(res['train']['auc'])
assert self.non_decreasing(res['test']['auc'])
# fail-safe test for dense data
from sklearn.datasets import load_svmlight_file
X2, y2 = load_svmlight_file(dpath + 'agaricus.txt.train')
X2 = X2.toarray()
dtrain2 = xgb.DMatrix(X2, label=y2)
param = {'objective': 'binary:logistic',
'updater': 'grow_gpu',
'max_depth': 2,
'eval_metric': 'auc'}
res = {}
xgb.train(param, dtrain2, num_rounds, [(dtrain2, 'train')], evals_result=res)
assert self.non_decreasing(res['train']['auc'])
assert res['train']['auc'][0] >= 0.85
for j in range(X2.shape[1]):
for i in rng.choice(X2.shape[0], size=num_rounds, replace=False):
X2[i, j] = 2
dtrain3 = xgb.DMatrix(X2, label=y2)
res = {}
xgb.train(param, dtrain3, num_rounds, [(dtrain3, 'train')], evals_result=res)
assert self.non_decreasing(res['train']['auc'])
assert res['train']['auc'][0] >= 0.85
for j in range(X2.shape[1]):
for i in np.random.choice(X2.shape[0], size=num_rounds, replace=False):
X2[i, j] = 3
dtrain4 = xgb.DMatrix(X2, label=y2)
res = {}
xgb.train(param, dtrain4, num_rounds, [(dtrain4, 'train')], evals_result=res)
assert self.non_decreasing(res['train']['auc'])
assert res['train']['auc'][0] >= 0.85
def test_grow_gpu_hist(self):
n_gpus=-1
tm._skip_if_no_sklearn()
from sklearn.datasets import load_digits
try:
from sklearn.model_selection import train_test_split
except:
from sklearn.cross_validation import train_test_split
for max_depth in range(3,10): # TODO: Doesn't work with 2 for some tests
#eprint("max_depth=%d" % (max_depth))
for max_bin_i in range(3,11):
max_bin = np.power(2,max_bin_i)
#eprint("max_bin=%d" % (max_bin))
# regression test --- hist must be same as exact on all-categorial data
ag_param = {'max_depth': max_depth,
'tree_method': 'exact',
'nthread': 1,
'eta': 1,
'silent': 1,
'objective': 'binary:logistic',
'eval_metric': 'auc'}
ag_param2 = {'max_depth': max_depth,
'updater': 'grow_gpu_hist',
'eta': 1,
'silent': 1,
'n_gpus': 1,
'objective': 'binary:logistic',
'max_bin': max_bin,
'eval_metric': 'auc'}
ag_param3 = {'max_depth': max_depth,
'updater': 'grow_gpu_hist',
'eta': 1,
'silent': 1,
'n_gpus': n_gpus,
'objective': 'binary:logistic',
'max_bin': max_bin,
'eval_metric': 'auc'}
ag_res = {}
ag_res2 = {}
ag_res3 = {}
num_rounds = 10
#eprint("normal updater");
xgb.train(ag_param, ag_dtrain, num_rounds, [(ag_dtrain, 'train'), (ag_dtest, 'test')],
evals_result=ag_res)
#eprint("grow_gpu_hist updater 1 gpu");
xgb.train(ag_param2, ag_dtrain, num_rounds, [(ag_dtrain, 'train'), (ag_dtest, 'test')],
evals_result=ag_res2)
#eprint("grow_gpu_hist updater %d gpus" % (n_gpus));
xgb.train(ag_param3, ag_dtrain, num_rounds, [(ag_dtrain, 'train'), (ag_dtest, 'test')],
evals_result=ag_res3)
# assert 1==0
assert ag_res['train']['auc'] == ag_res2['train']['auc']
assert ag_res['test']['auc'] == ag_res2['test']['auc']
assert ag_res['test']['auc'] == ag_res3['test']['auc']
######################################################################
digits = load_digits(2)
X = digits['data']
y = digits['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
dtrain = xgb.DMatrix(X_train, y_train)
dtest = xgb.DMatrix(X_test, y_test)
param = {'objective': 'binary:logistic',
'updater': 'grow_gpu_hist',
'max_depth': max_depth,
'n_gpus': 1,
'max_bin': max_bin,
'eval_metric': 'auc'}
res = {}
#eprint("digits: grow_gpu_hist updater 1 gpu");
xgb.train(param, dtrain, num_rounds, [(dtrain, 'train'), (dtest, 'test')],
evals_result=res)
assert self.non_decreasing(res['train']['auc'])
#assert self.non_decreasing(res['test']['auc'])
param2 = {'objective': 'binary:logistic',
'updater': 'grow_gpu_hist',
'max_depth': max_depth,
'n_gpus': n_gpus,
'max_bin': max_bin,
'eval_metric': 'auc'}
res2 = {}
#eprint("digits: grow_gpu_hist updater %d gpus" % (n_gpus));
xgb.train(param2, dtrain, num_rounds, [(dtrain, 'train'), (dtest, 'test')],
evals_result=res2)
assert self.non_decreasing(res2['train']['auc'])
#assert self.non_decreasing(res2['test']['auc'])
assert res['train']['auc'] == res2['train']['auc']
#assert res['test']['auc'] == res2['test']['auc']
######################################################################
# fail-safe test for dense data
from sklearn.datasets import load_svmlight_file
X2, y2 = load_svmlight_file(dpath + 'agaricus.txt.train')
X2 = X2.toarray()
dtrain2 = xgb.DMatrix(X2, label=y2)
param = {'objective': 'binary:logistic',
'updater': 'grow_gpu_hist',
'max_depth': max_depth,
'n_gpus': n_gpus,
'max_bin': max_bin,
'eval_metric': 'auc'}
res = {}
xgb.train(param, dtrain2, num_rounds, [(dtrain2, 'train')], evals_result=res)
assert self.non_decreasing(res['train']['auc'])
if max_bin>32:
assert res['train']['auc'][0] >= 0.85
for j in range(X2.shape[1]):
for i in rng.choice(X2.shape[0], size=num_rounds, replace=False):
X2[i, j] = 2
dtrain3 = xgb.DMatrix(X2, label=y2)
res = {}
xgb.train(param, dtrain3, num_rounds, [(dtrain3, 'train')], evals_result=res)
assert self.non_decreasing(res['train']['auc'])
if max_bin>32:
assert res['train']['auc'][0] >= 0.85
for j in range(X2.shape[1]):
for i in np.random.choice(X2.shape[0], size=num_rounds, replace=False):
X2[i, j] = 3
dtrain4 = xgb.DMatrix(X2, label=y2)
res = {}
xgb.train(param, dtrain4, num_rounds, [(dtrain4, 'train')], evals_result=res)
assert self.non_decreasing(res['train']['auc'])
if max_bin>32:
assert res['train']['auc'][0] >= 0.85
######################################################################
# fail-safe test for max_bin
param = {'objective': 'binary:logistic',
'updater': 'grow_gpu_hist',
'max_depth': max_depth,
'n_gpus': n_gpus,
'eval_metric': 'auc',
'max_bin': max_bin}
res = {}
xgb.train(param, dtrain2, num_rounds, [(dtrain2, 'train')], evals_result=res)
assert self.non_decreasing(res['train']['auc'])
if max_bin>32:
assert res['train']['auc'][0] >= 0.85
######################################################################
# subsampling
param = {'objective': 'binary:logistic',
'updater': 'grow_gpu_hist',
'max_depth': max_depth,
'n_gpus': n_gpus,
'eval_metric': 'auc',
'colsample_bytree': 0.5,
'colsample_bylevel': 0.5,
'subsample': 0.5,
'max_bin': max_bin}
res = {}
xgb.train(param, dtrain2, num_rounds, [(dtrain2, 'train')], evals_result=res)
assert self.non_decreasing(res['train']['auc'])
if max_bin>32:
assert res['train']['auc'][0] >= 0.85
######################################################################
# fail-safe test for max_bin=2
param = {'objective': 'binary:logistic',
'updater': 'grow_gpu_hist',
'max_depth': 2,
'n_gpus': n_gpus,
'eval_metric': 'auc',
'max_bin': 2}
res = {}
xgb.train(param, dtrain2, num_rounds, [(dtrain2, 'train')], evals_result=res)
assert self.non_decreasing(res['train']['auc'])
if max_bin>32:
assert res['train']['auc'][0] >= 0.85
def non_decreasing(self, L):
return all((x - y) < 0.001 for x, y in zip(L, L[1:]))