xgboost/src/data/simple_dmatrix.cu
Rory Mitchell 734a911a26
Loop over copy_if (#6201)
* Loop over copy_if

* Catch OOM.

Co-authored-by: fis <jm.yuan@outlook.com>
2020-10-14 10:23:16 +13:00

108 lines
4.0 KiB
Plaintext

/*!
* Copyright 2019 by Contributors
* \file simple_dmatrix.cu
*/
#include <thrust/copy.h>
#include <thrust/execution_policy.h>
#include <thrust/sort.h>
#include <xgboost/data.h>
#include "../common/random.h"
#include "./simple_dmatrix.h"
#include "device_adapter.cuh"
namespace xgboost {
namespace data {
template <typename AdapterBatchT>
void CountRowOffsets(const AdapterBatchT& batch, common::Span<bst_row_t> offset,
int device_idx, float missing) {
IsValidFunctor is_valid(missing);
// Count elements per row
dh::LaunchN(device_idx, batch.Size(), [=] __device__(size_t idx) {
auto element = batch.GetElement(idx);
if (is_valid(element)) {
atomicAdd(reinterpret_cast<unsigned long long*>( // NOLINT
&offset[element.row_idx]),
static_cast<unsigned long long>(1)); // NOLINT
}
});
dh::XGBCachingDeviceAllocator<char> alloc;
thrust::exclusive_scan(thrust::cuda::par(alloc),
thrust::device_pointer_cast(offset.data()),
thrust::device_pointer_cast(offset.data() + offset.size()),
thrust::device_pointer_cast(offset.data()));
}
template <typename AdapterBatchT>
struct COOToEntryOp {
AdapterBatchT batch;
__device__ Entry operator()(size_t idx) {
const auto& e = batch.GetElement(idx);
return Entry(e.column_idx, e.value);
}
};
// Here the data is already correctly ordered and simply needs to be compacted
// to remove missing data
template <typename AdapterT>
void CopyDataToDMatrix(AdapterT* adapter, common::Span<Entry> data,
float missing) {
auto batch = adapter->Value();
auto counting = thrust::make_counting_iterator(0llu);
dh::XGBCachingDeviceAllocator<char> alloc;
COOToEntryOp<decltype(batch)> transform_op{batch};
thrust::transform_iterator<decltype(transform_op), decltype(counting)>
transform_iter(counting, transform_op);
// We loop over batches because thrust::copy_if cant deal with sizes > 2^31
// See thrust issue #1302
size_t max_copy_size = std::numeric_limits<int>::max() / 2;
auto begin_output = thrust::device_pointer_cast(data.data());
for (size_t offset = 0; offset < batch.Size(); offset += max_copy_size) {
auto begin_input = transform_iter + offset;
auto end_input =
transform_iter + std::min(offset + max_copy_size, batch.Size());
begin_output =
thrust::copy_if(thrust::cuda::par(alloc), begin_input, end_input,
begin_output, IsValidFunctor(missing));
}
}
// Does not currently support metainfo as no on-device data source contains this
// Current implementation assumes a single batch. More batches can
// be supported in future. Does not currently support inferring row/column size
template <typename AdapterT>
SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
dh::safe_cuda(cudaSetDevice(adapter->DeviceIdx()));
CHECK(adapter->NumRows() != kAdapterUnknownSize);
CHECK(adapter->NumColumns() != kAdapterUnknownSize);
adapter->BeforeFirst();
adapter->Next();
auto& batch = adapter->Value();
sparse_page_.offset.SetDevice(adapter->DeviceIdx());
sparse_page_.data.SetDevice(adapter->DeviceIdx());
// Enforce single batch
CHECK(!adapter->Next());
sparse_page_.offset.Resize(adapter->NumRows() + 1);
auto s_offset = sparse_page_.offset.DeviceSpan();
CountRowOffsets(batch, s_offset, adapter->DeviceIdx(), missing);
info_.num_nonzero_ = sparse_page_.offset.HostVector().back();
sparse_page_.data.Resize(info_.num_nonzero_);
CopyDataToDMatrix(adapter, sparse_page_.data.DeviceSpan(), missing);
info_.num_col_ = adapter->NumColumns();
info_.num_row_ = adapter->NumRows();
// Synchronise worker columns
rabit::Allreduce<rabit::op::Max>(&info_.num_col_, 1);
}
template SimpleDMatrix::SimpleDMatrix(CudfAdapter* adapter, float missing,
int nthread);
template SimpleDMatrix::SimpleDMatrix(CupyAdapter* adapter, float missing,
int nthread);
} // namespace data
} // namespace xgboost