xgboost/tests/cpp/helpers.cc
Jiaming Yuan 142a208a90
Fix compiler warnings. (#8022)
- Remove/fix unused parameters
- Remove deprecated code in rabit.
- Update dmlc-core.
2022-06-22 21:29:10 +08:00

659 lines
22 KiB
C++

/*!
* Copyright 2016-2022 by XGBoost contributors
*/
#include <dmlc/filesystem.h>
#include <xgboost/logging.h>
#include <xgboost/objective.h>
#include <xgboost/metric.h>
#include <xgboost/learner.h>
#include <xgboost/gbm.h>
#include <xgboost/json.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <random>
#include <cinttypes>
#include "helpers.h"
#include "xgboost/c_api.h"
#include "../../src/data/adapter.h"
#include "../../src/data/simple_dmatrix.h"
#include "../../src/data/sparse_page_dmatrix.h"
#include "../../src/gbm/gbtree_model.h"
#include "xgboost/predictor.h"
#if defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1
#include <memory>
#include <numeric>
#include <vector>
#include "rmm/mr/device/per_device_resource.hpp"
#include "rmm/mr/device/cuda_memory_resource.hpp"
#include "rmm/mr/device/pool_memory_resource.hpp"
#endif // defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1
bool FileExists(const std::string& filename) {
struct stat st;
return stat(filename.c_str(), &st) == 0;
}
int64_t GetFileSize(const std::string& filename) {
struct stat st;
stat(filename.c_str(), &st);
return st.st_size;
}
void CreateSimpleTestData(const std::string& filename) {
CreateBigTestData(filename, 6);
}
void CreateBigTestData(const std::string& filename, size_t n_entries, bool zero_based) {
std::ofstream fo(filename.c_str());
const size_t entries_per_row = 3;
std::string odd_row;
if (zero_based) {
odd_row = " 0:0 3:30 4:40\n";
} else {
odd_row = " 1:0 4:30 5:40\n";
}
std::string even_row;
if (zero_based) {
even_row = " 0:0 1:10 2:20\n";
} else {
even_row = " 1:0 2:10 3:20\n";
}
size_t n_rows = (n_entries + entries_per_row - 1) / entries_per_row;
for (size_t i = 0; i < n_rows; ++i) {
auto row = i % 2 == 0 ? even_row : odd_row;
fo << i << row;
}
}
void CheckObjFunctionImpl(std::unique_ptr<xgboost::ObjFunction> const& obj,
std::vector<xgboost::bst_float> preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights,
xgboost::MetaInfo const& info,
std::vector<xgboost::bst_float> out_grad,
std::vector<xgboost::bst_float> out_hess) {
xgboost::HostDeviceVector<xgboost::bst_float> in_preds(preds);
xgboost::HostDeviceVector<xgboost::GradientPair> out_gpair;
obj->GetGradient(in_preds, info, 1, &out_gpair);
std::vector<xgboost::GradientPair>& gpair = out_gpair.HostVector();
ASSERT_EQ(gpair.size(), in_preds.Size());
for (int i = 0; i < static_cast<int>(gpair.size()); ++i) {
EXPECT_NEAR(gpair[i].GetGrad(), out_grad[i], 0.01)
<< "Unexpected grad for pred=" << preds[i] << " label=" << labels[i]
<< " weight=" << weights[i];
EXPECT_NEAR(gpair[i].GetHess(), out_hess[i], 0.01)
<< "Unexpected hess for pred=" << preds[i] << " label=" << labels[i]
<< " weight=" << weights[i];
}
}
void CheckObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
std::vector<xgboost::bst_float> preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights,
std::vector<xgboost::bst_float> out_grad,
std::vector<xgboost::bst_float> out_hess) {
xgboost::MetaInfo info;
info.num_row_ = labels.size();
info.labels =
xgboost::linalg::Tensor<float, 2>{labels.cbegin(), labels.cend(), {labels.size()}, -1};
info.weights_.HostVector() = weights;
CheckObjFunctionImpl(obj, preds, labels, weights, info, out_grad, out_hess);
}
xgboost::Json CheckConfigReloadImpl(xgboost::Configurable* const configurable,
std::string name) {
xgboost::Json config_0 { xgboost::Object() };
configurable->SaveConfig(&config_0);
configurable->LoadConfig(config_0);
xgboost::Json config_1 { xgboost::Object() };
configurable->SaveConfig(&config_1);
std::string str_0, str_1;
xgboost::Json::Dump(config_0, &str_0);
xgboost::Json::Dump(config_1, &str_1);
EXPECT_EQ(str_0, str_1);
if (name != "") {
EXPECT_EQ(xgboost::get<xgboost::String>(config_1["name"]), name);
}
return config_1;
}
void CheckRankingObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
std::vector<xgboost::bst_float> preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights,
std::vector<xgboost::bst_uint> groups,
std::vector<xgboost::bst_float> out_grad,
std::vector<xgboost::bst_float> out_hess) {
xgboost::MetaInfo info;
info.num_row_ = labels.size();
info.labels = xgboost::linalg::Tensor<float, 2>{
labels.cbegin(), labels.cend(), {labels.size(), static_cast<size_t>(1)}, -1};
info.weights_.HostVector() = weights;
info.group_ptr_ = groups;
CheckObjFunctionImpl(obj, preds, labels, weights, info, out_grad, out_hess);
}
xgboost::bst_float GetMetricEval(xgboost::Metric* metric,
xgboost::HostDeviceVector<xgboost::bst_float> const& preds,
std::vector<xgboost::bst_float> labels,
std::vector<xgboost::bst_float> weights,
std::vector<xgboost::bst_uint> groups) {
return GetMultiMetricEval(
metric, preds,
xgboost::linalg::Tensor<float, 2>{labels.begin(), labels.end(), {labels.size()}, -1}, weights,
groups);
}
double GetMultiMetricEval(xgboost::Metric* metric,
xgboost::HostDeviceVector<xgboost::bst_float> const& preds,
xgboost::linalg::Tensor<float, 2> const& labels,
std::vector<xgboost::bst_float> weights,
std::vector<xgboost::bst_uint> groups) {
xgboost::MetaInfo info;
info.num_row_ = labels.Shape(0);
info.labels.Reshape(labels.Shape()[0], labels.Shape()[1]);
info.labels.Data()->Copy(*labels.Data());
info.weights_.HostVector() = weights;
info.group_ptr_ = groups;
return metric->Eval(preds, info);
}
namespace xgboost {
bool IsNear(std::vector<xgboost::bst_float>::const_iterator _beg1,
std::vector<xgboost::bst_float>::const_iterator _end1,
std::vector<xgboost::bst_float>::const_iterator _beg2) {
for (auto iter1 = _beg1, iter2 = _beg2; iter1 != _end1; ++iter1, ++iter2) {
if (std::abs(*iter1 - *iter2) > xgboost::kRtEps){
return false;
}
}
return true;
}
SimpleLCG::StateType SimpleLCG::operator()() {
state_ = (alpha_ * state_ + (state_ == 0 ? kDefaultInit : 0)) % mod_;
return state_;
}
SimpleLCG::StateType SimpleLCG::Min() const { return min(); }
SimpleLCG::StateType SimpleLCG::Max() const { return max(); }
// Make sure it's compile time constant.
static_assert(SimpleLCG::max() - SimpleLCG::min(), "");
void RandomDataGenerator::GenerateDense(HostDeviceVector<float> *out) const {
xgboost::SimpleRealUniformDistribution<bst_float> dist(lower_, upper_);
CHECK(out);
SimpleLCG lcg{lcg_};
out->Resize(rows_ * cols_, 0);
auto &h_data = out->HostVector();
float sparsity = sparsity_ * (upper_ - lower_) + lower_;
for (auto &v : h_data) {
auto g = dist(&lcg);
if (g < sparsity) {
v = std::numeric_limits<float>::quiet_NaN();
} else {
v = dist(&lcg);
}
}
if (device_ >= 0) {
out->SetDevice(device_);
out->DeviceSpan();
}
}
Json RandomDataGenerator::ArrayInterfaceImpl(HostDeviceVector<float> *storage,
size_t rows, size_t cols) const {
this->GenerateDense(storage);
return GetArrayInterface(storage, rows, cols);
}
std::string RandomDataGenerator::GenerateArrayInterface(
HostDeviceVector<float> *storage) const {
auto array_interface = this->ArrayInterfaceImpl(storage, rows_, cols_);
std::string out;
Json::Dump(array_interface, &out);
return out;
}
std::pair<std::vector<std::string>, std::string>
RandomDataGenerator::GenerateArrayInterfaceBatch(
HostDeviceVector<float> *storage, size_t batches) const {
this->GenerateDense(storage);
std::vector<std::string> result(batches);
std::vector<Json> objects;
size_t const rows_per_batch = rows_ / batches;
auto make_interface = [storage, this](size_t offset, size_t rows) {
Json array_interface{Object()};
array_interface["data"] = std::vector<Json>(2);
if (device_ >= 0) {
array_interface["data"][0] =
Integer(reinterpret_cast<int64_t>(storage->DevicePointer() + offset));
array_interface["stream"] = Null{};
} else {
array_interface["data"][0] =
Integer(reinterpret_cast<int64_t>(storage->HostPointer() + offset));
}
array_interface["data"][1] = Boolean(false);
array_interface["shape"] = std::vector<Json>(2);
array_interface["shape"][0] = rows;
array_interface["shape"][1] = cols_;
array_interface["typestr"] = String("<f4");
array_interface["version"] = 3;
return array_interface;
};
auto j_interface = make_interface(0, rows_);
size_t offset = 0;
for (size_t i = 0; i < batches - 1; ++i) {
objects.emplace_back(make_interface(offset, rows_per_batch));
offset += rows_per_batch * cols_;
}
size_t const remaining = rows_ - offset / cols_;
CHECK_LE(offset, rows_ * cols_);
objects.emplace_back(make_interface(offset, remaining));
for (size_t i = 0; i < batches; ++i) {
Json::Dump(objects[i], &result[i]);
}
std::string interface_str;
Json::Dump(j_interface, &interface_str);
return {result, interface_str};
}
std::string RandomDataGenerator::GenerateColumnarArrayInterface(
std::vector<HostDeviceVector<float>> *data) const {
CHECK(data);
CHECK_EQ(data->size(), cols_);
auto& storage = *data;
Json arr { Array() };
for (size_t i = 0; i < cols_; ++i) {
auto column = this->ArrayInterfaceImpl(&storage[i], rows_, 1);
get<Array>(arr).emplace_back(column);
}
std::string out;
Json::Dump(arr, &out);
return out;
}
void RandomDataGenerator::GenerateCSR(
HostDeviceVector<float>* value, HostDeviceVector<bst_row_t>* row_ptr,
HostDeviceVector<bst_feature_t>* columns) const {
auto& h_value = value->HostVector();
auto& h_rptr = row_ptr->HostVector();
auto& h_cols = columns->HostVector();
SimpleLCG lcg{lcg_};
xgboost::SimpleRealUniformDistribution<bst_float> dist(lower_, upper_);
float sparsity = sparsity_ * (upper_ - lower_) + lower_;
SimpleRealUniformDistribution<bst_float> cat(0.0, max_cat_);
h_rptr.emplace_back(0);
for (size_t i = 0; i < rows_; ++i) {
size_t rptr = h_rptr.back();
for (size_t j = 0; j < cols_; ++j) {
auto g = dist(&lcg);
if (g >= sparsity) {
if (common::IsCat(ft_, j)) {
g = common::AsCat(cat(&lcg));
} else {
g = dist(&lcg);
}
h_value.emplace_back(g);
rptr++;
h_cols.emplace_back(j);
}
}
h_rptr.emplace_back(rptr);
}
if (device_ >= 0) {
value->SetDevice(device_);
value->DeviceSpan();
row_ptr->SetDevice(device_);
row_ptr->DeviceSpan();
columns->SetDevice(device_);
columns->DeviceSpan();
}
CHECK_LE(h_value.size(), rows_ * cols_);
CHECK_EQ(value->Size(), h_rptr.back());
CHECK_EQ(columns->Size(), value->Size());
}
std::shared_ptr<DMatrix>
RandomDataGenerator::GenerateDMatrix(bool with_label, bool float_label,
size_t classes) const {
HostDeviceVector<float> data;
HostDeviceVector<bst_row_t> rptrs;
HostDeviceVector<bst_feature_t> columns;
this->GenerateCSR(&data, &rptrs, &columns);
data::CSRAdapter adapter(rptrs.HostPointer(), columns.HostPointer(),
data.HostPointer(), rows_, data.Size(), cols_);
std::shared_ptr<DMatrix> out{
DMatrix::Create(&adapter, std::numeric_limits<float>::quiet_NaN(), 1)};
if (with_label) {
RandomDataGenerator gen(rows_, 1, 0);
if (!float_label) {
gen.Lower(0).Upper(classes).GenerateDense(out->Info().labels.Data());
out->Info().labels.Reshape(this->rows_);
auto& h_labels = out->Info().labels.Data()->HostVector();
for (auto& v : h_labels) {
v = static_cast<float>(static_cast<uint32_t>(v));
}
} else {
gen.GenerateDense(out->Info().labels.Data());
out->Info().labels.Reshape(this->rows_);
}
}
if (device_ >= 0) {
out->Info().labels.SetDevice(device_);
out->Info().feature_types.SetDevice(device_);
for (auto const& page : out->GetBatches<SparsePage>()) {
page.data.SetDevice(device_);
page.offset.SetDevice(device_);
}
}
if (!ft_.empty()) {
out->Info().feature_types.HostVector() = ft_;
}
return out;
}
std::shared_ptr<DMatrix>
GetDMatrixFromData(const std::vector<float> &x, int num_rows, int num_columns){
data::DenseAdapter adapter(x.data(), num_rows, num_columns);
return std::shared_ptr<DMatrix>(new data::SimpleDMatrix(
&adapter, std::numeric_limits<float>::quiet_NaN(), 1));
}
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(bst_row_t n_samples, bst_feature_t n_features,
size_t n_batches, std::string prefix) {
CHECK_GE(n_samples, n_batches);
ArrayIterForTest iter(0, n_samples, n_features, n_batches);
std::unique_ptr<DMatrix> dmat{
DMatrix::Create(static_cast<DataIterHandle>(&iter), iter.Proxy(), Reset, Next,
std::numeric_limits<float>::quiet_NaN(), omp_get_max_threads(), prefix)};
auto row_page_path =
data::MakeId(prefix, dynamic_cast<data::SparsePageDMatrix*>(dmat.get())) + ".row.page";
EXPECT_TRUE(FileExists(row_page_path)) << row_page_path;
// Loop over the batches and count the number of pages
int64_t batch_count = 0;
int64_t row_count = 0;
for (const auto& batch : dmat->GetBatches<xgboost::SparsePage>()) {
batch_count++;
row_count += batch.Size();
}
EXPECT_GE(batch_count, n_batches);
EXPECT_EQ(row_count, dmat->Info().num_row_);
return dmat;
}
std::unique_ptr<DMatrix> CreateSparsePageDMatrix(size_t n_entries,
std::string prefix) {
size_t n_columns = 3;
size_t n_rows = n_entries / n_columns;
ArrayIterForTest iter(0, n_rows, n_columns, 2);
std::unique_ptr<DMatrix> dmat{DMatrix::Create(
static_cast<DataIterHandle>(&iter), iter.Proxy(), Reset, Next,
std::numeric_limits<float>::quiet_NaN(), omp_get_max_threads(), prefix)};
auto row_page_path =
data::MakeId(prefix,
dynamic_cast<data::SparsePageDMatrix *>(dmat.get())) +
".row.page";
EXPECT_TRUE(FileExists(row_page_path)) << row_page_path;
// Loop over the batches and count the records
int64_t batch_count = 0;
int64_t row_count = 0;
for (const auto &batch : dmat->GetBatches<xgboost::SparsePage>()) {
batch_count++;
row_count += batch.Size();
}
EXPECT_GE(batch_count, 2);
EXPECT_EQ(row_count, dmat->Info().num_row_);
return dmat;
}
std::unique_ptr<DMatrix> CreateSparsePageDMatrixWithRC(
size_t n_rows, size_t n_cols, size_t page_size, bool deterministic,
const dmlc::TemporaryDirectory& tempdir) {
if (!n_rows || !n_cols) {
return nullptr;
}
// Create the svm file in a temp dir
const std::string tmp_file = tempdir.path + "/big.libsvm";
std::ofstream fo(tmp_file.c_str());
size_t cols_per_row = ((std::max(n_rows, n_cols) - 1) / std::min(n_rows, n_cols)) + 1;
int64_t rem_cols = n_cols;
size_t col_idx = 0;
// Random feature id generator
std::random_device rdev;
std::unique_ptr<std::mt19937> gen;
if (deterministic) {
// Seed it with a constant value for this configuration - without getting too fancy
// like ordered pairing functions and its likes to make it truely unique
gen.reset(new std::mt19937(n_rows * n_cols));
} else {
gen.reset(new std::mt19937(rdev()));
}
std::uniform_int_distribution<size_t> label(0, 1);
std::uniform_int_distribution<size_t> dis(1, n_cols);
for (size_t i = 0; i < n_rows; ++i) {
// Make sure that all cols are slotted in the first few rows; randomly distribute the
// rest
std::stringstream row_data;
size_t j = 0;
if (rem_cols > 0) {
for (; j < std::min(static_cast<size_t>(rem_cols), cols_per_row); ++j) {
row_data << label(*gen) << " " << (col_idx + j) << ":"
<< (col_idx + j + 1) * 10 * i;
}
rem_cols -= cols_per_row;
} else {
// Take some random number of colums in [1, n_cols] and slot them here
std::vector<size_t> random_columns;
size_t ncols = dis(*gen);
for (; j < ncols; ++j) {
size_t fid = (col_idx + j) % n_cols;
random_columns.push_back(fid);
}
std::sort(random_columns.begin(), random_columns.end());
for (auto fid : random_columns) {
row_data << label(*gen) << " " << fid << ":" << (fid + 1) * 10 * i;
}
}
col_idx += j;
fo << row_data.str() << "\n";
}
fo.close();
std::string uri = tmp_file;
if (page_size > 0) {
uri += "#" + tmp_file + ".cache";
}
std::unique_ptr<DMatrix> dmat(
DMatrix::Load(uri, true, false, "auto"));
return dmat;
}
gbm::GBTreeModel CreateTestModel(LearnerModelParam const* param, GenericParameter const* ctx,
size_t n_classes) {
gbm::GBTreeModel model(param, ctx);
for (size_t i = 0; i < n_classes; ++i) {
std::vector<std::unique_ptr<RegTree>> trees;
trees.push_back(std::unique_ptr<RegTree>(new RegTree));
if (i == 0) {
(*trees.back())[0].SetLeaf(1.5f);
(*trees.back()).Stat(0).sum_hess = 1.0f;
}
model.CommitModel(std::move(trees), i);
}
return model;
}
std::unique_ptr<GradientBooster> CreateTrainedGBM(
std::string name, Args kwargs, size_t kRows, size_t kCols,
LearnerModelParam const* learner_model_param,
GenericParameter const* generic_param) {
auto caches = std::make_shared< PredictionContainer >();;
std::unique_ptr<GradientBooster> gbm {
GradientBooster::Create(name, generic_param, learner_model_param)};
gbm->Configure(kwargs);
auto p_dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
std::vector<float> labels(kRows);
for (size_t i = 0; i < kRows; ++i) {
labels[i] = i;
}
p_dmat->Info().labels =
linalg::Tensor<float, 2>{labels.cbegin(), labels.cend(), {labels.size()}, -1};
HostDeviceVector<GradientPair> gpair;
auto& h_gpair = gpair.HostVector();
h_gpair.resize(kRows);
for (size_t i = 0; i < kRows; ++i) {
h_gpair[i] = {static_cast<float>(i), 1};
}
PredictionCacheEntry predts;
gbm->DoBoost(p_dmat.get(), &gpair, &predts, nullptr);
return gbm;
}
ArrayIterForTest::ArrayIterForTest(float sparsity, size_t rows, size_t cols,
size_t batches) : rows_{rows}, cols_{cols}, n_batches_{batches} {
XGProxyDMatrixCreate(&proxy_);
rng_.reset(new RandomDataGenerator{rows_, cols_, sparsity});
std::tie(batches_, interface_) =
rng_->GenerateArrayInterfaceBatch(&data_, n_batches_);
}
ArrayIterForTest::~ArrayIterForTest() { XGDMatrixFree(proxy_); }
int ArrayIterForTest::Next() {
if (iter_ == n_batches_) {
return 0;
}
XGProxyDMatrixSetDataDense(proxy_, batches_[iter_].c_str());
iter_++;
return 1;
}
size_t constexpr ArrayIterForTest::kRows;
size_t constexpr ArrayIterForTest::kCols;
void DMatrixToCSR(DMatrix *dmat, std::vector<float> *p_data,
std::vector<size_t> *p_row_ptr,
std::vector<bst_feature_t> *p_cids) {
auto &data = *p_data;
auto &row_ptr = *p_row_ptr;
auto &cids = *p_cids;
data.resize(dmat->Info().num_nonzero_);
cids.resize(data.size());
row_ptr.resize(dmat->Info().num_row_ + 1);
SparsePage page;
for (const auto &batch : dmat->GetBatches<SparsePage>()) {
page.Push(batch);
}
auto const& in_offset = page.offset.HostVector();
auto const& in_data = page.data.HostVector();
CHECK_EQ(in_offset.size(), row_ptr.size());
std::copy(in_offset.cbegin(), in_offset.cend(), row_ptr.begin());
ASSERT_EQ(in_data.size(), data.size());
std::transform(in_data.cbegin(), in_data.cend(), data.begin(), [](Entry const& e) {
return e.fvalue;
});
ASSERT_EQ(in_data.size(), cids.size());
std::transform(in_data.cbegin(), in_data.cend(), cids.begin(), [](Entry const& e) {
return e.index;
});
}
#if defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1
using CUDAMemoryResource = rmm::mr::cuda_memory_resource;
using PoolMemoryResource = rmm::mr::pool_memory_resource<CUDAMemoryResource>;
class RMMAllocator {
public:
std::vector<std::unique_ptr<CUDAMemoryResource>> cuda_mr;
std::vector<std::unique_ptr<PoolMemoryResource>> pool_mr;
int n_gpu;
RMMAllocator() : n_gpu(common::AllVisibleGPUs()) {
int current_device;
CHECK_EQ(cudaGetDevice(&current_device), cudaSuccess);
for (int i = 0; i < n_gpu; ++i) {
CHECK_EQ(cudaSetDevice(i), cudaSuccess);
cuda_mr.push_back(std::make_unique<CUDAMemoryResource>());
pool_mr.push_back(std::make_unique<PoolMemoryResource>(cuda_mr[i].get()));
}
CHECK_EQ(cudaSetDevice(current_device), cudaSuccess);
}
~RMMAllocator() = default;
};
void DeleteRMMResource(RMMAllocator* r) {
delete r;
}
RMMAllocatorPtr SetUpRMMResourceForCppTests(int argc, char** argv) {
bool use_rmm_pool = false;
for (int i = 1; i < argc; ++i) {
if (argv[i] == std::string("--use-rmm-pool")) {
use_rmm_pool = true;
}
}
if (!use_rmm_pool) {
return RMMAllocatorPtr(nullptr, DeleteRMMResource);
}
LOG(INFO) << "Using RMM memory pool";
auto ptr = RMMAllocatorPtr(new RMMAllocator(), DeleteRMMResource);
for (int i = 0; i < ptr->n_gpu; ++i) {
rmm::mr::set_per_device_resource(rmm::cuda_device_id(i), ptr->pool_mr[i].get());
}
return ptr;
}
#else // defined(XGBOOST_USE_RMM) && XGBOOST_USE_RMM == 1
class RMMAllocator {};
void DeleteRMMResource(RMMAllocator*) {}
RMMAllocatorPtr SetUpRMMResourceForCppTests(int, char**) { return {nullptr, DeleteRMMResource}; }
#endif // !defined(XGBOOST_USE_RMM) || XGBOOST_USE_RMM != 1
} // namespace xgboost