xgboost/src/common/hist_util.cc
Jiaming Yuan 4083440690
Small cleanups to various data types. (#8086)
- Use `bst_bin_t` in batch param constructor.
- Use `StringView` to avoid `std::string` when appropriate.
- Avoid using `MetaInfo` in quantile constructor to limit the scope of parameter.
2022-07-18 22:39:36 +08:00

276 lines
10 KiB
C++

/*!
* Copyright 2017-2020 by Contributors
* \file hist_util.cc
*/
#include <dmlc/timer.h>
#include <dmlc/omp.h>
#include <rabit/rabit.h>
#include <numeric>
#include <vector>
#include "xgboost/base.h"
#include "../common/common.h"
#include "hist_util.h"
#include "random.h"
#include "column_matrix.h"
#include "quantile.h"
#include "../data/gradient_index.h"
#if defined(XGBOOST_MM_PREFETCH_PRESENT)
#include <xmmintrin.h>
#define PREFETCH_READ_T0(addr) _mm_prefetch(reinterpret_cast<const char*>(addr), _MM_HINT_T0)
#elif defined(XGBOOST_BUILTIN_PREFETCH_PRESENT)
#define PREFETCH_READ_T0(addr) __builtin_prefetch(reinterpret_cast<const char*>(addr), 0, 3)
#else // no SW pre-fetching available; PREFETCH_READ_T0 is no-op
#define PREFETCH_READ_T0(addr) do {} while (0)
#endif // defined(XGBOOST_MM_PREFETCH_PRESENT)
namespace xgboost {
namespace common {
HistogramCuts::HistogramCuts() {
cut_ptrs_.HostVector().emplace_back(0);
}
HistogramCuts SketchOnDMatrix(DMatrix *m, int32_t max_bins, int32_t n_threads, bool use_sorted,
Span<float> const hessian) {
HistogramCuts out;
auto const& info = m->Info();
std::vector<bst_row_t> reduced(info.num_col_, 0);
for (auto const &page : m->GetBatches<SparsePage>()) {
auto const &entries_per_column =
CalcColumnSize(data::SparsePageAdapterBatch{page.GetView()}, info.num_col_, n_threads,
[](auto) { return true; });
CHECK_EQ(entries_per_column.size(), info.num_col_);
for (size_t i = 0; i < entries_per_column.size(); ++i) {
reduced[i] += entries_per_column[i];
}
}
if (!use_sorted) {
HostSketchContainer container(max_bins, m->Info().feature_types.ConstHostSpan(), reduced,
HostSketchContainer::UseGroup(info), n_threads);
for (auto const& page : m->GetBatches<SparsePage>()) {
container.PushRowPage(page, info, hessian);
}
container.MakeCuts(&out);
} else {
SortedSketchContainer container{max_bins, m->Info().feature_types.ConstHostSpan(), reduced,
HostSketchContainer::UseGroup(info), n_threads};
for (auto const& page : m->GetBatches<SortedCSCPage>()) {
container.PushColPage(page, info, hessian);
}
container.MakeCuts(&out);
}
return out;
}
/*!
* \brief fill a histogram by zeros in range [begin, end)
*/
void InitilizeHistByZeroes(GHistRow hist, size_t begin, size_t end) {
#if defined(XGBOOST_STRICT_R_MODE) && XGBOOST_STRICT_R_MODE == 1
std::fill(hist.begin() + begin, hist.begin() + end, xgboost::GradientPairPrecise());
#else // defined(XGBOOST_STRICT_R_MODE) && XGBOOST_STRICT_R_MODE == 1
memset(hist.data() + begin, '\0', (end - begin) * sizeof(xgboost::GradientPairPrecise));
#endif // defined(XGBOOST_STRICT_R_MODE) && XGBOOST_STRICT_R_MODE == 1
}
/*!
* \brief Increment hist as dst += add in range [begin, end)
*/
void IncrementHist(GHistRow dst, const GHistRow add, size_t begin, size_t end) {
double* pdst = reinterpret_cast<double*>(dst.data());
const double *padd = reinterpret_cast<const double *>(add.data());
for (size_t i = 2 * begin; i < 2 * end; ++i) {
pdst[i] += padd[i];
}
}
/*!
* \brief Copy hist from src to dst in range [begin, end)
*/
void CopyHist(GHistRow dst, const GHistRow src, size_t begin, size_t end) {
double *pdst = reinterpret_cast<double *>(dst.data());
const double *psrc = reinterpret_cast<const double *>(src.data());
for (size_t i = 2 * begin; i < 2 * end; ++i) {
pdst[i] = psrc[i];
}
}
/*!
* \brief Compute Subtraction: dst = src1 - src2 in range [begin, end)
*/
void SubtractionHist(GHistRow dst, const GHistRow src1, const GHistRow src2, size_t begin,
size_t end) {
double* pdst = reinterpret_cast<double*>(dst.data());
const double* psrc1 = reinterpret_cast<const double*>(src1.data());
const double* psrc2 = reinterpret_cast<const double*>(src2.data());
for (size_t i = 2 * begin; i < 2 * end; ++i) {
pdst[i] = psrc1[i] - psrc2[i];
}
}
struct Prefetch {
public:
static constexpr size_t kCacheLineSize = 64;
static constexpr size_t kPrefetchOffset = 10;
private:
static constexpr size_t kNoPrefetchSize =
kPrefetchOffset + kCacheLineSize /
sizeof(decltype(GHistIndexMatrix::row_ptr)::value_type);
public:
static size_t NoPrefetchSize(size_t rows) {
return std::min(rows, kNoPrefetchSize);
}
template <typename T>
static constexpr size_t GetPrefetchStep() {
return Prefetch::kCacheLineSize / sizeof(T);
}
};
constexpr size_t Prefetch::kNoPrefetchSize;
template <bool do_prefetch, typename BinIdxType, bool first_page, bool any_missing = true>
void BuildHistKernel(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices, const GHistIndexMatrix &gmat,
GHistRow hist) {
const size_t size = row_indices.Size();
const size_t *rid = row_indices.begin;
auto const *pgh = reinterpret_cast<const float *>(gpair.data());
const BinIdxType *gradient_index = gmat.index.data<BinIdxType>();
auto const &row_ptr = gmat.row_ptr.data();
auto base_rowid = gmat.base_rowid;
const uint32_t *offsets = gmat.index.Offset();
auto get_row_ptr = [&](size_t ridx) {
return first_page ? row_ptr[ridx] : row_ptr[ridx - base_rowid];
};
auto get_rid = [&](size_t ridx) {
return first_page ? ridx : (ridx - base_rowid);
};
const size_t n_features =
get_row_ptr(row_indices.begin[0] + 1) - get_row_ptr(row_indices.begin[0]);
auto hist_data = reinterpret_cast<double *>(hist.data());
const uint32_t two{2}; // Each element from 'gpair' and 'hist' contains
// 2 FP values: gradient and hessian.
// So we need to multiply each row-index/bin-index by 2
// to work with gradient pairs as a singe row FP array
for (size_t i = 0; i < size; ++i) {
const size_t icol_start =
any_missing ? get_row_ptr(rid[i]) : get_rid(rid[i]) * n_features;
const size_t icol_end =
any_missing ? get_row_ptr(rid[i] + 1) : icol_start + n_features;
const size_t row_size = icol_end - icol_start;
const size_t idx_gh = two * rid[i];
if (do_prefetch) {
const size_t icol_start_prefetch =
any_missing
? get_row_ptr(rid[i + Prefetch::kPrefetchOffset])
: get_rid(rid[i + Prefetch::kPrefetchOffset]) * n_features;
const size_t icol_end_prefetch =
any_missing ? get_row_ptr(rid[i + Prefetch::kPrefetchOffset] + 1)
: icol_start_prefetch + n_features;
PREFETCH_READ_T0(pgh + two * rid[i + Prefetch::kPrefetchOffset]);
for (size_t j = icol_start_prefetch; j < icol_end_prefetch;
j += Prefetch::GetPrefetchStep<uint32_t>()) {
PREFETCH_READ_T0(gradient_index + j);
}
}
const BinIdxType *gr_index_local = gradient_index + icol_start;
for (size_t j = 0; j < row_size; ++j) {
const uint32_t idx_bin = two * (static_cast<uint32_t>(gr_index_local[j]) +
(any_missing ? 0 : offsets[j]));
hist_data[idx_bin] += pgh[idx_gh];
hist_data[idx_bin + 1] += pgh[idx_gh + 1];
}
}
}
template <bool do_prefetch, bool any_missing>
void BuildHistDispatch(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices, const GHistIndexMatrix &gmat,
GHistRow hist) {
auto first_page = gmat.base_rowid == 0;
if (first_page) {
switch (gmat.index.GetBinTypeSize()) {
case kUint8BinsTypeSize:
BuildHistKernel<do_prefetch, uint8_t, true, any_missing>(gpair, row_indices, gmat, hist);
break;
case kUint16BinsTypeSize:
BuildHistKernel<do_prefetch, uint16_t, true, any_missing>(gpair, row_indices, gmat, hist);
break;
case kUint32BinsTypeSize:
BuildHistKernel<do_prefetch, uint32_t, true, any_missing>(gpair, row_indices, gmat, hist);
break;
default:
CHECK(false); // no default behavior
}
} else {
switch (gmat.index.GetBinTypeSize()) {
case kUint8BinsTypeSize:
BuildHistKernel<do_prefetch, uint8_t, false, any_missing>(gpair, row_indices, gmat, hist);
break;
case kUint16BinsTypeSize:
BuildHistKernel<do_prefetch, uint16_t, false, any_missing>(gpair, row_indices, gmat, hist);
break;
case kUint32BinsTypeSize:
BuildHistKernel<do_prefetch, uint32_t, false, any_missing>(gpair, row_indices, gmat, hist);
break;
default:
CHECK(false); // no default behavior
}
}
}
template <bool any_missing>
void GHistBuilder::BuildHist(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices, const GHistIndexMatrix &gmat,
GHistRow hist) const {
const size_t nrows = row_indices.Size();
const size_t no_prefetch_size = Prefetch::NoPrefetchSize(nrows);
// if need to work with all rows from bin-matrix (e.g. root node)
const bool contiguousBlock =
(row_indices.begin[nrows - 1] - row_indices.begin[0]) == (nrows - 1);
if (contiguousBlock) {
// contiguous memory access, built-in HW prefetching is enough
BuildHistDispatch<false, any_missing>(gpair, row_indices,
gmat, hist);
} else {
const RowSetCollection::Elem span1(row_indices.begin,
row_indices.end - no_prefetch_size);
const RowSetCollection::Elem span2(row_indices.end - no_prefetch_size,
row_indices.end);
BuildHistDispatch<true, any_missing>(gpair, span1, gmat, hist);
// no prefetching to avoid loading extra memory
BuildHistDispatch<false, any_missing>(gpair, span2, gmat, hist);
}
}
template void GHistBuilder::BuildHist<true>(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix &gmat, GHistRow hist) const;
template void GHistBuilder::BuildHist<false>(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix &gmat, GHistRow hist) const;
} // namespace common
} // namespace xgboost