- Fix prediction range. - Support prediction cache in mt-hist. - Support model slicing. - Make the booster a Python iterable by defining `__iter__`. - Cleanup removed/deprecated parameters. - A new field in the output model `iteration_indptr` for pointing to the ranges of trees for each iteration.
======================
XGBoost Python Package
======================
|PyPI version|
Installation
============
From `PyPI <https://pypi.python.org/pypi/xgboost>`_
---------------------------------------------------
For a stable version, install using ``pip``::
pip install xgboost
.. |PyPI version| image:: https://badge.fury.io/py/xgboost.svg
:target: http://badge.fury.io/py/xgboost
For building from source, see `build <https://xgboost.readthedocs.io/en/latest/build.html>`_.