xgboost/plugin/updater_oneapi/regression_obj_oneapi.cc

183 lines
6.7 KiB
C++
Executable File

#include <xgboost/logging.h>
#include <xgboost/objective.h>
#include <cmath>
#include <memory>
#include <vector>
#include "xgboost/host_device_vector.h"
#include "xgboost/json.h"
#include "xgboost/parameter.h"
#include "xgboost/span.h"
#include "../../src/common/transform.h"
#include "../../src/common/common.h"
#include "./regression_loss_oneapi.h"
#include "CL/sycl.hpp"
namespace xgboost {
namespace obj {
DMLC_REGISTRY_FILE_TAG(regression_obj_oneapi);
struct RegLossParamOneAPI : public XGBoostParameter<RegLossParamOneAPI> {
float scale_pos_weight;
// declare parameters
DMLC_DECLARE_PARAMETER(RegLossParamOneAPI) {
DMLC_DECLARE_FIELD(scale_pos_weight).set_default(1.0f).set_lower_bound(0.0f)
.describe("Scale the weight of positive examples by this factor");
}
};
template<typename Loss>
class RegLossObjOneAPI : public ObjFunction {
protected:
HostDeviceVector<int> label_correct_;
public:
RegLossObjOneAPI() = default;
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.UpdateAllowUnknown(args);
cl::sycl::default_selector selector;
qu_ = cl::sycl::queue(selector);
}
void GetGradient(const HostDeviceVector<bst_float>& preds,
const MetaInfo &info,
int iter,
HostDeviceVector<GradientPair>* out_gpair) override {
if (info.labels_.Size() == 0U) {
LOG(WARNING) << "Label set is empty.";
}
CHECK_EQ(preds.Size(), info.labels_.Size())
<< " " << "labels are not correctly provided"
<< "preds.size=" << preds.Size() << ", label.size=" << info.labels_.Size() << ", "
<< "Loss: " << Loss::Name();
size_t const ndata = preds.Size();
out_gpair->Resize(ndata);
// TODO: add label_correct check
label_correct_.Resize(1);
label_correct_.Fill(1);
bool is_null_weight = info.weights_.Size() == 0;
cl::sycl::buffer<bst_float, 1> preds_buf(preds.HostPointer(), preds.Size());
cl::sycl::buffer<bst_float, 1> labels_buf(info.labels_.HostPointer(), info.labels_.Size());
cl::sycl::buffer<GradientPair, 1> out_gpair_buf(out_gpair->HostPointer(), out_gpair->Size());
cl::sycl::buffer<bst_float, 1> weights_buf(is_null_weight ? NULL : info.weights_.HostPointer(),
is_null_weight ? 1 : info.weights_.Size());
cl::sycl::buffer<int, 1> additional_input_buf(1);
{
auto additional_input_acc = additional_input_buf.get_access<cl::sycl::access::mode::write>();
additional_input_acc[0] = 1; // Fill the label_correct flag
}
auto scale_pos_weight = param_.scale_pos_weight;
if (!is_null_weight) {
CHECK_EQ(info.weights_.Size(), ndata)
<< "Number of weights should be equal to number of data points.";
}
qu_.submit([&](cl::sycl::handler& cgh) {
auto preds_acc = preds_buf.get_access<cl::sycl::access::mode::read>(cgh);
auto labels_acc = labels_buf.get_access<cl::sycl::access::mode::read>(cgh);
auto weights_acc = weights_buf.get_access<cl::sycl::access::mode::read>(cgh);
auto out_gpair_acc = out_gpair_buf.get_access<cl::sycl::access::mode::write>(cgh);
auto additional_input_acc = additional_input_buf.get_access<cl::sycl::access::mode::write>(cgh);
cgh.parallel_for<>(cl::sycl::range<1>(ndata), [=](cl::sycl::id<1> pid) {
int idx = pid[0];
bst_float p = Loss::PredTransform(preds_acc[idx]);
bst_float w = is_null_weight ? 1.0f : weights_acc[idx];
bst_float label = labels_acc[idx];
if (label == 1.0f) {
w *= scale_pos_weight;
}
if (!Loss::CheckLabel(label)) {
// If there is an incorrect label, the host code will know.
additional_input_acc[0] = 0;
}
out_gpair_acc[idx] = GradientPair(Loss::FirstOrderGradient(p, label) * w,
Loss::SecondOrderGradient(p, label) * w);
});
}).wait();
int flag = 1;
{
auto additional_input_acc = additional_input_buf.get_access<cl::sycl::access::mode::read>();
flag = additional_input_acc[0];
}
if (flag == 0) {
LOG(FATAL) << Loss::LabelErrorMsg();
}
}
public:
const char* DefaultEvalMetric() const override {
return Loss::DefaultEvalMetric();
}
void PredTransform(HostDeviceVector<float> *io_preds) override {
size_t const ndata = io_preds->Size();
cl::sycl::buffer<bst_float, 1> io_preds_buf(io_preds->HostPointer(), io_preds->Size());
qu_.submit([&](cl::sycl::handler& cgh) {
auto io_preds_acc = io_preds_buf.get_access<cl::sycl::access::mode::read_write>(cgh);
cgh.parallel_for<>(cl::sycl::range<1>(ndata), [=](cl::sycl::id<1> pid) {
int idx = pid[0];
io_preds_acc[idx] = Loss::PredTransform(io_preds_acc[idx]);
});
}).wait();
}
float ProbToMargin(float base_score) const override {
return Loss::ProbToMargin(base_score);
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String(Loss::Name());
out["reg_loss_param"] = ToJson(param_);
}
void LoadConfig(Json const& in) override {
FromJson(in["reg_loss_param"], &param_);
}
protected:
RegLossParamOneAPI param_;
cl::sycl::queue qu_;
};
// register the objective functions
DMLC_REGISTER_PARAMETER(RegLossParamOneAPI);
// TODO: Find a better way to dispatch names of DPC++ kernels with various template parameters of loss function
XGBOOST_REGISTER_OBJECTIVE(SquaredLossRegressionOneAPI, LinearSquareLossOneAPI::Name())
.describe("Regression with squared error with DPC++ backend.")
.set_body([]() { return new RegLossObjOneAPI<LinearSquareLossOneAPI>(); });
XGBOOST_REGISTER_OBJECTIVE(SquareLogErrorOneAPI, SquaredLogErrorOneAPI::Name())
.describe("Regression with root mean squared logarithmic error with DPC++ backend.")
.set_body([]() { return new RegLossObjOneAPI<SquaredLogErrorOneAPI>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRegressionOneAPI, LogisticRegressionOneAPI::Name())
.describe("Logistic regression for probability regression task with DPC++ backend.")
.set_body([]() { return new RegLossObjOneAPI<LogisticRegressionOneAPI>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticClassificationOneAPI, LogisticClassificationOneAPI::Name())
.describe("Logistic regression for binary classification task with DPC++ backend.")
.set_body([]() { return new RegLossObjOneAPI<LogisticClassificationOneAPI>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRawOneAPI, LogisticRawOneAPI::Name())
.describe("Logistic regression for classification, output score "
"before logistic transformation with DPC++ backend.")
.set_body([]() { return new RegLossObjOneAPI<LogisticRawOneAPI>(); });
} // namespace obj
} // namespace xgboost