147 lines
4.4 KiB
C++
147 lines
4.4 KiB
C++
#include <valarray>
|
|
#include "../../../src/common/random.h"
|
|
#include "../helpers.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
TEST(ColumnSampler, Test) {
|
|
int n = 128;
|
|
ColumnSampler cs;
|
|
std::vector<float> feature_weights;
|
|
|
|
// No node sampling
|
|
cs.Init(n, feature_weights, 1.0f, 0.5f, 0.5f);
|
|
auto set0 = cs.GetFeatureSet(0);
|
|
ASSERT_EQ(set0->Size(), 32);
|
|
|
|
auto set1 = cs.GetFeatureSet(0);
|
|
|
|
ASSERT_EQ(set0->HostVector(), set1->HostVector());
|
|
|
|
auto set2 = cs.GetFeatureSet(1);
|
|
ASSERT_NE(set1->HostVector(), set2->HostVector());
|
|
ASSERT_EQ(set2->Size(), 32);
|
|
|
|
// Node sampling
|
|
cs.Init(n, feature_weights, 0.5f, 1.0f, 0.5f);
|
|
auto set3 = cs.GetFeatureSet(0);
|
|
ASSERT_EQ(set3->Size(), 32);
|
|
|
|
auto set4 = cs.GetFeatureSet(0);
|
|
|
|
ASSERT_NE(set3->HostVector(), set4->HostVector());
|
|
ASSERT_EQ(set4->Size(), 32);
|
|
|
|
// No level or node sampling, should be the same at different depth
|
|
cs.Init(n, feature_weights, 1.0f, 1.0f, 0.5f);
|
|
ASSERT_EQ(cs.GetFeatureSet(0)->HostVector(),
|
|
cs.GetFeatureSet(1)->HostVector());
|
|
|
|
cs.Init(n, feature_weights, 1.0f, 1.0f, 1.0f);
|
|
auto set5 = cs.GetFeatureSet(0);
|
|
ASSERT_EQ(set5->Size(), n);
|
|
cs.Init(n, feature_weights, 1.0f, 1.0f, 1.0f);
|
|
auto set6 = cs.GetFeatureSet(0);
|
|
ASSERT_EQ(set5->HostVector(), set6->HostVector());
|
|
|
|
// Should always be a minimum of one feature
|
|
cs.Init(n, feature_weights, 1e-16f, 1e-16f, 1e-16f);
|
|
ASSERT_EQ(cs.GetFeatureSet(0)->Size(), 1);
|
|
}
|
|
|
|
// Test if different threads using the same seed produce the same result
|
|
TEST(ColumnSampler, ThreadSynchronisation) {
|
|
const int64_t num_threads = 100;
|
|
int n = 128;
|
|
size_t iterations = 10;
|
|
size_t levels = 5;
|
|
std::vector<bst_feature_t> reference_result;
|
|
std::vector<float> feature_weights;
|
|
bool success = true; // Cannot use google test asserts in multithreaded region
|
|
#pragma omp parallel num_threads(num_threads)
|
|
{
|
|
for (auto j = 0ull; j < iterations; j++) {
|
|
ColumnSampler cs(j);
|
|
cs.Init(n, feature_weights, 0.5f, 0.5f, 0.5f);
|
|
for (auto level = 0ull; level < levels; level++) {
|
|
auto result = cs.GetFeatureSet(level)->ConstHostVector();
|
|
#pragma omp single
|
|
{ reference_result = result; }
|
|
if (result != reference_result) {
|
|
success = false;
|
|
}
|
|
#pragma omp barrier
|
|
}
|
|
}
|
|
}
|
|
ASSERT_TRUE(success);
|
|
}
|
|
|
|
TEST(ColumnSampler, WeightedSampling) {
|
|
auto test_basic = [](int first) {
|
|
std::vector<float> feature_weights(2);
|
|
feature_weights[0] = std::abs(first - 1.0f);
|
|
feature_weights[1] = first - 0.0f;
|
|
ColumnSampler cs{0};
|
|
cs.Init(2, feature_weights, 1.0, 1.0, 0.5);
|
|
auto feature_sets = cs.GetFeatureSet(0);
|
|
auto const &h_feat_set = feature_sets->HostVector();
|
|
ASSERT_EQ(h_feat_set.size(), 1);
|
|
ASSERT_EQ(h_feat_set[0], first - 0);
|
|
};
|
|
|
|
test_basic(0);
|
|
test_basic(1);
|
|
|
|
size_t constexpr kCols = 64;
|
|
std::vector<float> feature_weights(kCols);
|
|
SimpleLCG rng;
|
|
SimpleRealUniformDistribution<float> dist(.0f, 12.0f);
|
|
std::generate(feature_weights.begin(), feature_weights.end(), [&]() { return dist(&rng); });
|
|
ColumnSampler cs{0};
|
|
cs.Init(kCols, feature_weights, 0.5f, 1.0f, 1.0f);
|
|
std::vector<bst_feature_t> features(kCols);
|
|
std::iota(features.begin(), features.end(), 0);
|
|
std::vector<float> freq(kCols, 0);
|
|
for (size_t i = 0; i < 1024; ++i) {
|
|
auto fset = cs.GetFeatureSet(0);
|
|
ASSERT_EQ(kCols * 0.5, fset->Size());
|
|
auto const& h_fset = fset->HostVector();
|
|
for (auto f : h_fset) {
|
|
freq[f] += 1.0f;
|
|
}
|
|
}
|
|
|
|
auto norm = std::accumulate(freq.cbegin(), freq.cend(), .0f);
|
|
for (auto& f : freq) {
|
|
f /= norm;
|
|
}
|
|
norm = std::accumulate(feature_weights.cbegin(), feature_weights.cend(), .0f);
|
|
for (auto& f : feature_weights) {
|
|
f /= norm;
|
|
}
|
|
|
|
for (size_t i = 0; i < feature_weights.size(); ++i) {
|
|
EXPECT_NEAR(freq[i], feature_weights[i], 1e-2);
|
|
}
|
|
}
|
|
|
|
TEST(ColumnSampler, WeightedMultiSampling) {
|
|
size_t constexpr kCols = 32;
|
|
std::vector<float> feature_weights(kCols, 0);
|
|
for (size_t i = 0; i < feature_weights.size(); ++i) {
|
|
feature_weights[i] = i;
|
|
}
|
|
ColumnSampler cs{0};
|
|
float bytree{0.5}, bylevel{0.5}, bynode{0.5};
|
|
cs.Init(feature_weights.size(), feature_weights, bytree, bylevel, bynode);
|
|
auto feature_set = cs.GetFeatureSet(0);
|
|
size_t n_sampled = kCols * bytree * bylevel * bynode;
|
|
ASSERT_EQ(feature_set->Size(), n_sampled);
|
|
feature_set = cs.GetFeatureSet(1);
|
|
ASSERT_EQ(feature_set->Size(), n_sampled);
|
|
}
|
|
} // namespace common
|
|
} // namespace xgboost
|