* Pass pointer to model parameters. This PR de-duplicates most of the model parameters except the one in `tree_model.h`. One difficulty is `base_score` is a model property but can be changed at runtime by objective function. Hence when performing model IO, we need to save the one provided by users, instead of the one transformed by objective. Here we created an immutable version of `LearnerModelParam` that represents the value of model parameter after configuration.
143 lines
5.1 KiB
C++
143 lines
5.1 KiB
C++
// Copyright by Contributors
|
|
#include <dmlc/filesystem.h>
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/predictor.h>
|
|
|
|
#include "../helpers.h"
|
|
#include "../../../src/gbm/gbtree_model.h"
|
|
|
|
namespace xgboost {
|
|
TEST(CpuPredictor, Basic) {
|
|
auto lparam = CreateEmptyGenericParam(GPUIDX);
|
|
auto cache = std::make_shared<std::unordered_map<DMatrix*, PredictionCacheEntry>>();
|
|
std::unique_ptr<Predictor> cpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &lparam, cache));
|
|
|
|
int kRows = 5;
|
|
int kCols = 5;
|
|
|
|
LearnerModelParam param;
|
|
param.num_feature = kCols;
|
|
param.base_score = 0.0;
|
|
param.num_output_group = 1;
|
|
|
|
gbm::GBTreeModel model = CreateTestModel(¶m);
|
|
|
|
auto dmat = CreateDMatrix(kRows, kCols, 0);
|
|
|
|
// Test predict batch
|
|
HostDeviceVector<float> out_predictions;
|
|
cpu_predictor->PredictBatch((*dmat).get(), &out_predictions, model, 0);
|
|
std::vector<float>& out_predictions_h = out_predictions.HostVector();
|
|
for (size_t i = 0; i < out_predictions.Size(); i++) {
|
|
ASSERT_EQ(out_predictions_h[i], 1.5);
|
|
}
|
|
|
|
// Test predict instance
|
|
auto &batch = *(*dmat)->GetBatches<xgboost::SparsePage>().begin();
|
|
for (size_t i = 0; i < batch.Size(); i++) {
|
|
std::vector<float> instance_out_predictions;
|
|
cpu_predictor->PredictInstance(batch[i], &instance_out_predictions, model);
|
|
ASSERT_EQ(instance_out_predictions[0], 1.5);
|
|
}
|
|
|
|
// Test predict leaf
|
|
std::vector<float> leaf_out_predictions;
|
|
cpu_predictor->PredictLeaf((*dmat).get(), &leaf_out_predictions, model);
|
|
for (auto v : leaf_out_predictions) {
|
|
ASSERT_EQ(v, 0);
|
|
}
|
|
|
|
// Test predict contribution
|
|
std::vector<float> out_contribution;
|
|
cpu_predictor->PredictContribution((*dmat).get(), &out_contribution, model);
|
|
ASSERT_EQ(out_contribution.size(), kRows * (kCols + 1));
|
|
for (size_t i = 0; i < out_contribution.size(); ++i) {
|
|
auto const& contri = out_contribution[i];
|
|
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
|
|
if ((i+1) % (kCols+1) == 0) {
|
|
ASSERT_EQ(out_contribution.back(), 1.5f);
|
|
} else {
|
|
ASSERT_EQ(contri, 0);
|
|
}
|
|
}
|
|
// Test predict contribution (approximate method)
|
|
cpu_predictor->PredictContribution((*dmat).get(), &out_contribution, model, 0, nullptr, true);
|
|
for (size_t i = 0; i < out_contribution.size(); ++i) {
|
|
auto const& contri = out_contribution[i];
|
|
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
|
|
if ((i+1) % (kCols+1) == 0) {
|
|
ASSERT_EQ(out_contribution.back(), 1.5f);
|
|
} else {
|
|
ASSERT_EQ(contri, 0);
|
|
}
|
|
}
|
|
|
|
delete dmat;
|
|
}
|
|
|
|
TEST(CpuPredictor, ExternalMemory) {
|
|
dmlc::TemporaryDirectory tmpdir;
|
|
std::string filename = tmpdir.path + "/big.libsvm";
|
|
std::unique_ptr<DMatrix> dmat = CreateSparsePageDMatrix(12, 64, filename);
|
|
auto lparam = CreateEmptyGenericParam(GPUIDX);
|
|
auto cache = std::make_shared<std::unordered_map<DMatrix*, PredictionCacheEntry>>();
|
|
|
|
std::unique_ptr<Predictor> cpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor", &lparam, cache));
|
|
|
|
LearnerModelParam param;
|
|
param.base_score = 0;
|
|
param.num_feature = dmat->Info().num_col_;
|
|
param.num_output_group = 1;
|
|
|
|
gbm::GBTreeModel model = CreateTestModel(¶m);
|
|
|
|
// Test predict batch
|
|
HostDeviceVector<float> out_predictions;
|
|
cpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
|
|
std::vector<float> &out_predictions_h = out_predictions.HostVector();
|
|
ASSERT_EQ(out_predictions.Size(), dmat->Info().num_row_);
|
|
for (const auto& v : out_predictions_h) {
|
|
ASSERT_EQ(v, 1.5);
|
|
}
|
|
|
|
// Test predict leaf
|
|
std::vector<float> leaf_out_predictions;
|
|
cpu_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
|
|
ASSERT_EQ(leaf_out_predictions.size(), dmat->Info().num_row_);
|
|
for (const auto& v : leaf_out_predictions) {
|
|
ASSERT_EQ(v, 0);
|
|
}
|
|
|
|
// Test predict contribution
|
|
std::vector<float> out_contribution;
|
|
cpu_predictor->PredictContribution(dmat.get(), &out_contribution, model);
|
|
ASSERT_EQ(out_contribution.size(), dmat->Info().num_row_ * (dmat->Info().num_col_ + 1));
|
|
for (size_t i = 0; i < out_contribution.size(); ++i) {
|
|
auto const& contri = out_contribution[i];
|
|
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
|
|
if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) {
|
|
ASSERT_EQ(out_contribution.back(), 1.5f);
|
|
} else {
|
|
ASSERT_EQ(contri, 0);
|
|
}
|
|
}
|
|
|
|
// Test predict contribution (approximate method)
|
|
std::vector<float> out_contribution_approximate;
|
|
cpu_predictor->PredictContribution(dmat.get(), &out_contribution_approximate, model, 0, nullptr, true);
|
|
ASSERT_EQ(out_contribution_approximate.size(),
|
|
dmat->Info().num_row_ * (dmat->Info().num_col_ + 1));
|
|
for (size_t i = 0; i < out_contribution.size(); ++i) {
|
|
auto const& contri = out_contribution[i];
|
|
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
|
|
if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) {
|
|
ASSERT_EQ(out_contribution.back(), 1.5f);
|
|
} else {
|
|
ASSERT_EQ(contri, 0);
|
|
}
|
|
}
|
|
}
|
|
} // namespace xgboost
|