xgboost/tests/benchmark/benchmark_tree.py
2019-06-21 11:51:48 +12:00

87 lines
3.0 KiB
Python

"""Run benchmark on the tree booster."""
import argparse
import ast
import time
import numpy as np
import xgboost as xgb
RNG = np.random.RandomState(1994)
def run_benchmark(args):
"""Runs the benchmark."""
try:
dtest = xgb.DMatrix('dtest.dm')
dtrain = xgb.DMatrix('dtrain.dm')
if not (dtest.num_col() == args.columns
and dtrain.num_col() == args.columns):
raise ValueError("Wrong cols")
if not (dtest.num_row() == args.rows * args.test_size
and dtrain.num_row() == args.rows * (1 - args.test_size)):
raise ValueError("Wrong rows")
except:
print("Generating dataset: {} rows * {} columns".format(args.rows, args.columns))
print("{}/{} test/train split".format(args.test_size, 1.0 - args.test_size))
tmp = time.time()
X = RNG.rand(args.rows, args.columns)
y = RNG.randint(0, 2, args.rows)
if 0.0 < args.sparsity < 1.0:
X = np.array([[np.nan if RNG.uniform(0, 1) < args.sparsity else x for x in x_row]
for x_row in X])
train_rows = int(args.rows * (1.0 - args.test_size))
test_rows = int(args.rows * args.test_size)
X_train = X[:train_rows, :]
X_test = X[-test_rows:, :]
y_train = y[:train_rows]
y_test = y[-test_rows:]
print("Generate Time: %s seconds" % (str(time.time() - tmp)))
del X, y
tmp = time.time()
print("DMatrix Start")
dtrain = xgb.DMatrix(X_train, y_train, nthread=-1)
dtest = xgb.DMatrix(X_test, y_test, nthread=-1)
print("DMatrix Time: %s seconds" % (str(time.time() - tmp)))
del X_train, y_train, X_test, y_test
dtest.save_binary('dtest.dm')
dtrain.save_binary('dtrain.dm')
param = {'objective': 'binary:logistic'}
if args.params != '':
param.update(ast.literal_eval(args.params))
param['tree_method'] = args.tree_method
print("Training with '%s'" % param['tree_method'])
tmp = time.time()
xgb.train(param, dtrain, args.iterations, evals=[(dtest, "test")])
print("Train Time: %s seconds" % (str(time.time() - tmp)))
def main():
"""The main function.
Defines and parses command line arguments and calls the benchmark.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--tree_method', default='gpu_hist')
parser.add_argument('--sparsity', type=float, default=0.0)
parser.add_argument('--rows', type=int, default=1000000)
parser.add_argument('--columns', type=int, default=50)
parser.add_argument('--iterations', type=int, default=500)
parser.add_argument('--test_size', type=float, default=0.25)
parser.add_argument('--params', default='',
help='Provide additional parameters as a Python dict string, e.g. --params '
'\"{\'max_depth\':2}\"')
args = parser.parse_args()
run_benchmark(args)
if __name__ == '__main__':
main()