xgboost/tests/cpp/linear/test_linear.cc
Jiaming Yuan f0064c07ab
Refactor configuration [Part II]. (#4577)
* Refactor configuration [Part II].

* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
   parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.

* Learner changes:
** Make `LearnerImpl` the only source of configuration.

    All configurations are stored and carried out by `LearnerImpl::Configure()`.

** Remove booster in C API.

    Originally kept for "compatibility reason", but did not state why.  So here
    we just remove it.

** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`.  Configuration will always be lazy.
** Run `Configure` before every iteration.

* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.

    `GBTree` is now used to dispatch the predictor.

** Remove some GPU Predictor tests.

* IO

No IO changes.  The binary model format stability is tested by comparing
hashing value of save models between two commits
2019-07-20 08:34:56 -04:00

52 lines
1.7 KiB
C++

/*!
* Copyright 2018-2019 by Contributors
*/
#include <xgboost/linear_updater.h>
#include "../helpers.h"
#include "xgboost/gbm.h"
TEST(Linear, shotgun) {
auto mat = xgboost::CreateDMatrix(10, 10, 0);
auto lparam = xgboost::CreateEmptyGenericParam(0, 0);
{
auto updater = std::unique_ptr<xgboost::LinearUpdater>(
xgboost::LinearUpdater::Create("shotgun", &lparam));
updater->Configure({{"eta", "1."}});
xgboost::HostDeviceVector<xgboost::GradientPair> gpair(
(*mat)->Info().num_row_, xgboost::GradientPair(-5, 1.0));
xgboost::gbm::GBLinearModel model;
model.param.num_feature = (*mat)->Info().num_col_;
model.param.num_output_group = 1;
model.LazyInitModel();
updater->Update(&gpair, (*mat).get(), &model, gpair.Size());
ASSERT_EQ(model.bias()[0], 5.0f);
}
{
auto updater = std::unique_ptr<xgboost::LinearUpdater>(
xgboost::LinearUpdater::Create("shotgun", &lparam));
EXPECT_ANY_THROW(updater->Configure({{"feature_selector", "random"}}));
}
delete mat;
}
TEST(Linear, coordinate) {
auto mat = xgboost::CreateDMatrix(10, 10, 0);
auto lparam = xgboost::CreateEmptyGenericParam(0, 0);
auto updater = std::unique_ptr<xgboost::LinearUpdater>(
xgboost::LinearUpdater::Create("coord_descent", &lparam));
updater->Configure({{"eta", "1."}});
xgboost::HostDeviceVector<xgboost::GradientPair> gpair(
(*mat)->Info().num_row_, xgboost::GradientPair(-5, 1.0));
xgboost::gbm::GBLinearModel model;
model.param.num_feature = (*mat)->Info().num_col_;
model.param.num_output_group = 1;
model.LazyInitModel();
updater->Update(&gpair, (*mat).get(), &model, gpair.Size());
ASSERT_EQ(model.bias()[0], 5.0f);
delete mat;
}