xgboost/src/tree/common_row_partitioner.h
Jiaming Yuan 3e26107a9c
Rename and extract Context. (#8528)
* Rename `GenericParameter` to `Context`.
* Rename header file to reflect the change.
* Rename all references.
2022-12-07 04:58:54 +08:00

213 lines
9.0 KiB
C++

/*!
* Copyright 2021-2022 XGBoost contributors
* \file common_row_partitioner.h
* \brief Common partitioner logic for hist and approx methods.
*/
#ifndef XGBOOST_TREE_COMMON_ROW_PARTITIONER_H_
#define XGBOOST_TREE_COMMON_ROW_PARTITIONER_H_
#include <limits> // std::numeric_limits
#include <vector>
#include "../common/numeric.h" // Iota
#include "../common/partition_builder.h"
#include "hist/expand_entry.h" // CPUExpandEntry
#include "xgboost/context.h" // Context
namespace xgboost {
namespace tree {
class CommonRowPartitioner {
static constexpr size_t kPartitionBlockSize = 2048;
common::PartitionBuilder<kPartitionBlockSize> partition_builder_;
common::RowSetCollection row_set_collection_;
public:
bst_row_t base_rowid = 0;
CommonRowPartitioner() = default;
CommonRowPartitioner(Context const* ctx, bst_row_t num_row, bst_row_t _base_rowid)
: base_rowid{_base_rowid} {
row_set_collection_.Clear();
std::vector<size_t>& row_indices = *row_set_collection_.Data();
row_indices.resize(num_row);
std::size_t* p_row_indices = row_indices.data();
common::Iota(ctx, p_row_indices, p_row_indices + row_indices.size(), base_rowid);
row_set_collection_.Init();
}
void FindSplitConditions(const std::vector<CPUExpandEntry>& nodes, const RegTree& tree,
const GHistIndexMatrix& gmat, std::vector<int32_t>* split_conditions) {
for (size_t i = 0; i < nodes.size(); ++i) {
const int32_t nid = nodes[i].nid;
const bst_uint fid = tree[nid].SplitIndex();
const bst_float split_pt = tree[nid].SplitCond();
const uint32_t lower_bound = gmat.cut.Ptrs()[fid];
const uint32_t upper_bound = gmat.cut.Ptrs()[fid + 1];
bst_bin_t split_cond = -1;
// convert floating-point split_pt into corresponding bin_id
// split_cond = -1 indicates that split_pt is less than all known cut points
CHECK_LT(upper_bound, static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
for (auto bound = lower_bound; bound < upper_bound; ++bound) {
if (split_pt == gmat.cut.Values()[bound]) {
split_cond = static_cast<int32_t>(bound);
}
}
(*split_conditions).at(i) = split_cond;
}
}
void AddSplitsToRowSet(const std::vector<CPUExpandEntry>& nodes, RegTree const* p_tree) {
const size_t n_nodes = nodes.size();
for (unsigned int i = 0; i < n_nodes; ++i) {
const int32_t nid = nodes[i].nid;
const size_t n_left = partition_builder_.GetNLeftElems(i);
const size_t n_right = partition_builder_.GetNRightElems(i);
CHECK_EQ((*p_tree)[nid].LeftChild() + 1, (*p_tree)[nid].RightChild());
row_set_collection_.AddSplit(nid, (*p_tree)[nid].LeftChild(), (*p_tree)[nid].RightChild(),
n_left, n_right);
}
}
void UpdatePosition(Context const* ctx, GHistIndexMatrix const& gmat,
std::vector<CPUExpandEntry> const& nodes, RegTree const* p_tree) {
auto const& column_matrix = gmat.Transpose();
if (column_matrix.IsInitialized()) {
if (gmat.cut.HasCategorical()) {
this->template UpdatePosition<true>(ctx, gmat, column_matrix, nodes, p_tree);
} else {
this->template UpdatePosition<false>(ctx, gmat, column_matrix, nodes, p_tree);
}
} else {
/* ColumnMatrix is not initilized.
* It means that we use 'approx' method.
* any_missing and any_cat don't metter in this case.
* Jump directly to the main method.
*/
this->template UpdatePosition<uint8_t, true, true>(ctx, gmat, column_matrix, nodes, p_tree);
}
}
template <bool any_cat>
void UpdatePosition(Context const* ctx, GHistIndexMatrix const& gmat,
const common::ColumnMatrix& column_matrix,
std::vector<CPUExpandEntry> const& nodes, RegTree const* p_tree) {
if (column_matrix.AnyMissing()) {
this->template UpdatePosition<true, any_cat>(ctx, gmat, column_matrix, nodes, p_tree);
} else {
this->template UpdatePosition<false, any_cat>(ctx, gmat, column_matrix, nodes, p_tree);
}
}
template <bool any_missing, bool any_cat>
void UpdatePosition(Context const* ctx, GHistIndexMatrix const& gmat,
const common::ColumnMatrix& column_matrix,
std::vector<CPUExpandEntry> const& nodes, RegTree const* p_tree) {
switch (column_matrix.GetTypeSize()) {
case common::kUint8BinsTypeSize:
this->template UpdatePosition<uint8_t, any_missing, any_cat>(ctx, gmat, column_matrix,
nodes, p_tree);
break;
case common::kUint16BinsTypeSize:
this->template UpdatePosition<uint16_t, any_missing, any_cat>(ctx, gmat, column_matrix,
nodes, p_tree);
break;
case common::kUint32BinsTypeSize:
this->template UpdatePosition<uint32_t, any_missing, any_cat>(ctx, gmat, column_matrix,
nodes, p_tree);
break;
default:
// no default behavior
CHECK(false) << column_matrix.GetTypeSize();
}
}
template <typename BinIdxType, bool any_missing, bool any_cat>
void UpdatePosition(Context const* ctx, GHistIndexMatrix const& gmat,
const common::ColumnMatrix& column_matrix,
std::vector<CPUExpandEntry> const& nodes, RegTree const* p_tree) {
// 1. Find split condition for each split
size_t n_nodes = nodes.size();
std::vector<int32_t> split_conditions;
if (column_matrix.IsInitialized()) {
split_conditions.resize(n_nodes);
FindSplitConditions(nodes, *p_tree, gmat, &split_conditions);
}
// 2.1 Create a blocked space of size SUM(samples in each node)
common::BlockedSpace2d space(
n_nodes,
[&](size_t node_in_set) {
int32_t nid = nodes[node_in_set].nid;
return row_set_collection_[nid].Size();
},
kPartitionBlockSize);
// 2.2 Initialize the partition builder
// allocate buffers for storage intermediate results by each thread
partition_builder_.Init(space.Size(), n_nodes, [&](size_t node_in_set) {
const int32_t nid = nodes[node_in_set].nid;
const size_t size = row_set_collection_[nid].Size();
const size_t n_tasks = size / kPartitionBlockSize + !!(size % kPartitionBlockSize);
return n_tasks;
});
CHECK_EQ(base_rowid, gmat.base_rowid);
// 2.3 Split elements of row_set_collection_ to left and right child-nodes for each node
// Store results in intermediate buffers from partition_builder_
common::ParallelFor2d(space, ctx->Threads(), [&](size_t node_in_set, common::Range1d r) {
size_t begin = r.begin();
const int32_t nid = nodes[node_in_set].nid;
const size_t task_id = partition_builder_.GetTaskIdx(node_in_set, begin);
partition_builder_.AllocateForTask(task_id);
bst_bin_t split_cond = column_matrix.IsInitialized() ? split_conditions[node_in_set] : 0;
partition_builder_.template Partition<BinIdxType, any_missing, any_cat>(
node_in_set, nodes, r, split_cond, gmat, column_matrix, *p_tree,
row_set_collection_[nid].begin);
});
// 3. Compute offsets to copy blocks of row-indexes
// from partition_builder_ to row_set_collection_
partition_builder_.CalculateRowOffsets();
// 4. Copy elements from partition_builder_ to row_set_collection_ back
// with updated row-indexes for each tree-node
common::ParallelFor2d(space, ctx->Threads(), [&](size_t node_in_set, common::Range1d r) {
const int32_t nid = nodes[node_in_set].nid;
partition_builder_.MergeToArray(node_in_set, r.begin(),
const_cast<size_t*>(row_set_collection_[nid].begin));
});
// 5. Add info about splits into row_set_collection_
AddSplitsToRowSet(nodes, p_tree);
}
auto const& Partitions() const { return row_set_collection_; }
size_t Size() const {
return std::distance(row_set_collection_.begin(), row_set_collection_.end());
}
auto& operator[](bst_node_t nidx) { return row_set_collection_[nidx]; }
auto const& operator[](bst_node_t nidx) const { return row_set_collection_[nidx]; }
void LeafPartition(Context const* ctx, RegTree const& tree, common::Span<float const> hess,
std::vector<bst_node_t>* p_out_position) const {
partition_builder_.LeafPartition(ctx, tree, this->Partitions(), p_out_position,
[&](size_t idx) -> bool { return hess[idx] - .0f == .0f; });
}
void LeafPartition(Context const* ctx, RegTree const& tree,
common::Span<GradientPair const> gpair,
std::vector<bst_node_t>* p_out_position) const {
partition_builder_.LeafPartition(
ctx, tree, this->Partitions(), p_out_position,
[&](size_t idx) -> bool { return gpair[idx].GetHess() - .0f == .0f; });
}
};
} // namespace tree
} // namespace xgboost
#endif // XGBOOST_TREE_COMMON_ROW_PARTITIONER_H_