xgboost/src/common/stats.cuh
Jiaming Yuan 3e26107a9c
Rename and extract Context. (#8528)
* Rename `GenericParameter` to `Context`.
* Rename header file to reflect the change.
* Rename all references.
2022-12-07 04:58:54 +08:00

128 lines
4.4 KiB
Plaintext

/*!
* Copyright 2022 by XGBoost Contributors
*/
#ifndef XGBOOST_COMMON_STATS_CUH_
#define XGBOOST_COMMON_STATS_CUH_
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/permutation_iterator.h>
#include <iterator> // std::distance
#include "device_helpers.cuh"
#include "linalg_op.cuh"
#include "xgboost/context.h"
#include "xgboost/linalg.h"
#include "xgboost/tree_model.h"
namespace xgboost {
namespace common {
/**
* \brief Compute segmented quantile on GPU.
*
* \tparam SegIt Iterator for CSR style segments indptr
* \tparam ValIt Iterator for values
*
* \param alpha The p^th quantile we want to compute
*
* std::distance(ptr_begin, ptr_end) should be equal to n_segments + 1
*/
template <typename SegIt, typename ValIt>
void SegmentedQuantile(Context const* ctx, double alpha, SegIt seg_begin, SegIt seg_end,
ValIt val_begin, ValIt val_end, HostDeviceVector<float>* quantiles) {
CHECK(alpha >= 0 && alpha <= 1);
dh::device_vector<size_t> sorted_idx;
using Tup = thrust::tuple<size_t, float>;
dh::SegmentedArgSort(seg_begin, seg_end, val_begin, val_end, &sorted_idx);
auto n_segments = std::distance(seg_begin, seg_end) - 1;
if (n_segments <= 0) {
return;
}
quantiles->SetDevice(ctx->gpu_id);
quantiles->Resize(n_segments);
auto d_results = quantiles->DeviceSpan();
auto d_sorted_idx = dh::ToSpan(sorted_idx);
auto val = thrust::make_permutation_iterator(val_begin, dh::tcbegin(d_sorted_idx));
dh::LaunchN(n_segments, [=] XGBOOST_DEVICE(size_t i) {
// each segment is the index of a leaf.
size_t seg_idx = i;
size_t begin = seg_begin[seg_idx];
auto n = static_cast<double>(seg_begin[seg_idx + 1] - begin);
if (n == 0) {
d_results[i] = std::numeric_limits<float>::quiet_NaN();
return;
}
if (alpha <= (1 / (n + 1))) {
d_results[i] = val[begin];
return;
}
if (alpha >= (n / (n + 1))) {
d_results[i] = val[common::LastOf(seg_idx, seg_begin)];
return;
}
double x = alpha * static_cast<double>(n + 1);
double k = std::floor(x) - 1;
double d = (x - 1) - k;
auto v0 = val[begin + static_cast<size_t>(k)];
auto v1 = val[begin + static_cast<size_t>(k) + 1];
d_results[seg_idx] = v0 + d * (v1 - v0);
});
}
template <typename SegIt, typename ValIt, typename WIter>
void SegmentedWeightedQuantile(Context const* ctx, double alpha, SegIt seg_beg, SegIt seg_end,
ValIt val_begin, ValIt val_end, WIter w_begin, WIter w_end,
HostDeviceVector<float>* quantiles) {
CHECK(alpha >= 0 && alpha <= 1);
dh::device_vector<size_t> sorted_idx;
dh::SegmentedArgSort(seg_beg, seg_end, val_begin, val_end, &sorted_idx);
auto d_sorted_idx = dh::ToSpan(sorted_idx);
size_t n_weights = std::distance(w_begin, w_end);
dh::device_vector<float> weights_cdf(n_weights);
dh::XGBCachingDeviceAllocator<char> caching;
auto scan_key = dh::MakeTransformIterator<size_t>(
thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(size_t i) { return dh::SegmentId(seg_beg, seg_end, i); });
auto scan_val = dh::MakeTransformIterator<float>(
thrust::make_counting_iterator(0ul),
[=] XGBOOST_DEVICE(size_t i) { return w_begin[d_sorted_idx[i]]; });
thrust::inclusive_scan_by_key(thrust::cuda::par(caching), scan_key, scan_key + n_weights,
scan_val, weights_cdf.begin());
auto n_segments = std::distance(seg_beg, seg_end) - 1;
quantiles->SetDevice(ctx->gpu_id);
quantiles->Resize(n_segments);
auto d_results = quantiles->DeviceSpan();
auto d_weight_cdf = dh::ToSpan(weights_cdf);
dh::LaunchN(n_segments, [=] XGBOOST_DEVICE(size_t i) {
size_t seg_idx = i;
size_t begin = seg_beg[seg_idx];
auto n = static_cast<double>(seg_beg[seg_idx + 1] - begin);
if (n == 0) {
d_results[i] = std::numeric_limits<float>::quiet_NaN();
return;
}
auto leaf_cdf = d_weight_cdf.subspan(begin, static_cast<size_t>(n));
auto leaf_sorted_idx = d_sorted_idx.subspan(begin, static_cast<size_t>(n));
float thresh = leaf_cdf.back() * alpha;
size_t idx = thrust::lower_bound(thrust::seq, leaf_cdf.data(),
leaf_cdf.data() + leaf_cdf.size(), thresh) -
leaf_cdf.data();
idx = std::min(idx, static_cast<size_t>(n - 1));
d_results[i] = val_begin[leaf_sorted_idx[idx]];
});
}
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_STATS_CUH_