xgboost/old_src/io/simple_fmatrix-inl.hpp
2016-01-16 10:24:00 -08:00

375 lines
12 KiB
C++

/*!
* Copyright 2014 by Contributors
* \file simple_fmatrix-inl.hpp
* \brief the input data structure for gradient boosting
* \author Tianqi Chen
*/
#ifndef XGBOOST_IO_SIMPLE_FMATRIX_INL_HPP_
#define XGBOOST_IO_SIMPLE_FMATRIX_INL_HPP_
#include <limits>
#include <algorithm>
#include <vector>
#include "../data.h"
#include "../utils/utils.h"
#include "../utils/random.h"
#include "../utils/omp.h"
#include "../learner/dmatrix.h"
#include "../utils/group_data.h"
#include "./sparse_batch_page.h"
namespace xgboost {
namespace io {
/*!
* \brief sparse matrix that support column access, CSC
*/
class FMatrixS : public IFMatrix {
public:
typedef SparseBatch::Entry Entry;
/*! \brief constructor */
FMatrixS(utils::IIterator<RowBatch> *iter,
const learner::MetaInfo &info)
: info_(info) {
this->iter_ = iter;
}
// destructor
virtual ~FMatrixS(void) {
if (iter_ != NULL) delete iter_;
}
/*! \return whether column access is enabled */
virtual bool HaveColAccess(void) const {
return col_size_.size() != 0;
}
/*! \brief get number of columns */
virtual size_t NumCol(void) const {
utils::Check(this->HaveColAccess(), "NumCol:need column access");
return col_size_.size();
}
/*! \brief get number of buffered rows */
virtual const std::vector<bst_uint> &buffered_rowset(void) const {
return buffered_rowset_;
}
/*! \brief get column size */
virtual size_t GetColSize(size_t cidx) const {
return col_size_[cidx];
}
/*! \brief get column density */
virtual float GetColDensity(size_t cidx) const {
size_t nmiss = buffered_rowset_.size() - col_size_[cidx];
return 1.0f - (static_cast<float>(nmiss)) / buffered_rowset_.size();
}
virtual void InitColAccess(const std::vector<bool> &enabled,
float pkeep, size_t max_row_perbatch) {
if (this->HaveColAccess()) return;
this->InitColData(enabled, pkeep, max_row_perbatch);
}
/*!
* \brief get the row iterator associated with FMatrix
*/
virtual utils::IIterator<RowBatch>* RowIterator(void) {
iter_->BeforeFirst();
return iter_;
}
/*!
* \brief get the column based iterator
*/
virtual utils::IIterator<ColBatch>* ColIterator(void) {
size_t ncol = this->NumCol();
col_iter_.col_index_.resize(ncol);
for (size_t i = 0; i < ncol; ++i) {
col_iter_.col_index_[i] = static_cast<bst_uint>(i);
}
col_iter_.BeforeFirst();
return &col_iter_;
}
/*!
* \brief column based iterator
*/
virtual utils::IIterator<ColBatch> *ColIterator(const std::vector<bst_uint> &fset) {
size_t ncol = this->NumCol();
col_iter_.col_index_.resize(0);
for (size_t i = 0; i < fset.size(); ++i) {
if (fset[i] < ncol) col_iter_.col_index_.push_back(fset[i]);
}
col_iter_.BeforeFirst();
return &col_iter_;
}
/*!
* \brief save column access data into stream
* \param fo output stream to save to
*/
inline void SaveColAccess(utils::IStream &fo) const { // NOLINT(*)
size_t n = 0;
fo.Write(&n, sizeof(n));
}
/*!
* \brief load column access data from stream
* \param fo output stream to load from
*/
inline void LoadColAccess(utils::IStream &fi) { // NOLINT(*)
// do nothing in load col access
}
protected:
/*!
* \brief initialize column data
* \param enabled the list of enabled columns
* \param pkeep probability to keep a row
* \param max_row_perbatch maximum row per batch
*/
inline void InitColData(const std::vector<bool> &enabled,
float pkeep, size_t max_row_perbatch) {
col_iter_.Clear();
if (info_.num_row() < max_row_perbatch) {
SparsePage *page = new SparsePage();
this->MakeOneBatch(enabled, pkeep, page);
col_iter_.cpages_.push_back(page);
} else {
this->MakeManyBatch(enabled, pkeep, max_row_perbatch);
}
// setup col-size
col_size_.resize(info_.num_col());
std::fill(col_size_.begin(), col_size_.end(), 0);
for (size_t i = 0; i < col_iter_.cpages_.size(); ++i) {
SparsePage *pcol = col_iter_.cpages_[i];
for (size_t j = 0; j < pcol->Size(); ++j) {
col_size_[j] += pcol->offset[j + 1] - pcol->offset[j];
}
}
}
/*!
* \brief make column page from iterator
* \param pkeep probability to keep a row
* \param pcol the target column
*/
inline void MakeOneBatch(const std::vector<bool> &enabled,
float pkeep,
SparsePage *pcol) {
// clear rowset
buffered_rowset_.clear();
// bit map
int nthread;
std::vector<bool> bmap;
#pragma omp parallel
{
nthread = omp_get_num_threads();
}
pcol->Clear();
utils::ParallelGroupBuilder<SparseBatch::Entry>
builder(&pcol->offset, &pcol->data);
builder.InitBudget(info_.num_col(), nthread);
// start working
iter_->BeforeFirst();
while (iter_->Next()) {
const RowBatch &batch = iter_->Value();
bmap.resize(bmap.size() + batch.size, true);
long batch_size = static_cast<long>(batch.size); // NOLINT(*)
for (long i = 0; i < batch_size; ++i) { // NOLINT(*)
bst_uint ridx = static_cast<bst_uint>(batch.base_rowid + i);
if (pkeep == 1.0f || random::SampleBinary(pkeep)) {
buffered_rowset_.push_back(ridx);
} else {
bmap[i] = false;
}
}
#pragma omp parallel for schedule(static)
for (long i = 0; i < batch_size; ++i) { // NOLINT(*)
int tid = omp_get_thread_num();
bst_uint ridx = static_cast<bst_uint>(batch.base_rowid + i);
if (bmap[ridx]) {
RowBatch::Inst inst = batch[i];
for (bst_uint j = 0; j < inst.length; ++j) {
if (enabled[inst[j].index]) {
builder.AddBudget(inst[j].index, tid);
}
}
}
}
}
builder.InitStorage();
iter_->BeforeFirst();
while (iter_->Next()) {
const RowBatch &batch = iter_->Value();
#pragma omp parallel for schedule(static)
for (long i = 0; i < static_cast<long>(batch.size); ++i) { // NOLINT(*)
int tid = omp_get_thread_num();
bst_uint ridx = static_cast<bst_uint>(batch.base_rowid + i);
if (bmap[ridx]) {
RowBatch::Inst inst = batch[i];
for (bst_uint j = 0; j < inst.length; ++j) {
if (enabled[inst[j].index]) {
builder.Push(inst[j].index,
Entry((bst_uint)(batch.base_rowid+i),
inst[j].fvalue), tid);
}
}
}
}
}
utils::Assert(pcol->Size() == info_.num_col(),
"inconsistent col data");
// sort columns
bst_omp_uint ncol = static_cast<bst_omp_uint>(pcol->Size());
#pragma omp parallel for schedule(dynamic, 1) num_threads(nthread)
for (bst_omp_uint i = 0; i < ncol; ++i) {
if (pcol->offset[i] < pcol->offset[i + 1]) {
std::sort(BeginPtr(pcol->data) + pcol->offset[i],
BeginPtr(pcol->data) + pcol->offset[i + 1],
SparseBatch::Entry::CmpValue);
}
}
}
inline void MakeManyBatch(const std::vector<bool> &enabled,
float pkeep, size_t max_row_perbatch) {
size_t btop = 0;
buffered_rowset_.clear();
// internal temp cache
SparsePage tmp; tmp.Clear();
iter_->BeforeFirst();
while (iter_->Next()) {
const RowBatch &batch = iter_->Value();
for (size_t i = 0; i < batch.size; ++i) {
bst_uint ridx = static_cast<bst_uint>(batch.base_rowid + i);
if (pkeep == 1.0f || random::SampleBinary(pkeep)) {
buffered_rowset_.push_back(ridx);
tmp.Push(batch[i]);
}
if (tmp.Size() >= max_row_perbatch) {
SparsePage *page = new SparsePage();
this->MakeColPage(tmp.GetRowBatch(0),
BeginPtr(buffered_rowset_) + btop,
enabled, page);
col_iter_.cpages_.push_back(page);
btop = buffered_rowset_.size();
tmp.Clear();
}
}
}
if (tmp.Size() != 0) {
SparsePage *page = new SparsePage();
this->MakeColPage(tmp.GetRowBatch(0),
BeginPtr(buffered_rowset_) + btop,
enabled, page);
col_iter_.cpages_.push_back(page);
}
}
// make column page from subset of rowbatchs
inline void MakeColPage(const RowBatch &batch,
const bst_uint *ridx,
const std::vector<bool> &enabled,
SparsePage *pcol) {
int nthread;
#pragma omp parallel
{
nthread = omp_get_num_threads();
int max_nthread = std::max(omp_get_num_procs() / 2 - 2, 1);
if (nthread > max_nthread) {
nthread = max_nthread;
}
}
pcol->Clear();
utils::ParallelGroupBuilder<SparseBatch::Entry>
builder(&pcol->offset, &pcol->data);
builder.InitBudget(info_.num_col(), nthread);
bst_omp_uint ndata = static_cast<bst_uint>(batch.size);
#pragma omp parallel for schedule(static) num_threads(nthread)
for (bst_omp_uint i = 0; i < ndata; ++i) {
int tid = omp_get_thread_num();
RowBatch::Inst inst = batch[i];
for (bst_uint j = 0; j < inst.length; ++j) {
const SparseBatch::Entry &e = inst[j];
if (enabled[e.index]) {
builder.AddBudget(e.index, tid);
}
}
}
builder.InitStorage();
#pragma omp parallel for schedule(static) num_threads(nthread)
for (bst_omp_uint i = 0; i < ndata; ++i) {
int tid = omp_get_thread_num();
RowBatch::Inst inst = batch[i];
for (bst_uint j = 0; j < inst.length; ++j) {
const SparseBatch::Entry &e = inst[j];
builder.Push(e.index,
SparseBatch::Entry(ridx[i], e.fvalue),
tid);
}
}
utils::Assert(pcol->Size() == info_.num_col(), "inconsistent col data");
// sort columns
bst_omp_uint ncol = static_cast<bst_omp_uint>(pcol->Size());
#pragma omp parallel for schedule(dynamic, 1) num_threads(nthread)
for (bst_omp_uint i = 0; i < ncol; ++i) {
if (pcol->offset[i] < pcol->offset[i + 1]) {
std::sort(BeginPtr(pcol->data) + pcol->offset[i],
BeginPtr(pcol->data) + pcol->offset[i + 1],
SparseBatch::Entry::CmpValue);
}
}
}
private:
// one batch iterator that return content in the matrix
struct ColBatchIter: utils::IIterator<ColBatch> {
ColBatchIter(void) : data_ptr_(0) {}
virtual ~ColBatchIter(void) {
this->Clear();
}
virtual void BeforeFirst(void) {
data_ptr_ = 0;
}
virtual bool Next(void) {
if (data_ptr_ >= cpages_.size()) return false;
data_ptr_ += 1;
SparsePage *pcol = cpages_[data_ptr_ - 1];
batch_.size = col_index_.size();
col_data_.resize(col_index_.size(), SparseBatch::Inst(NULL, 0));
for (size_t i = 0; i < col_data_.size(); ++i) {
const bst_uint ridx = col_index_[i];
col_data_[i] = SparseBatch::Inst
(BeginPtr(pcol->data) + pcol->offset[ridx],
static_cast<bst_uint>(pcol->offset[ridx + 1] - pcol->offset[ridx]));
}
batch_.col_index = BeginPtr(col_index_);
batch_.col_data = BeginPtr(col_data_);
return true;
}
virtual const ColBatch &Value(void) const {
return batch_;
}
inline void Clear(void) {
for (size_t i = 0; i < cpages_.size(); ++i) {
delete cpages_[i];
}
cpages_.clear();
}
// data content
std::vector<bst_uint> col_index_;
// column content
std::vector<ColBatch::Inst> col_data_;
// column sparse pages
std::vector<SparsePage*> cpages_;
// data pointer
size_t data_ptr_;
// temporal space for batch
ColBatch batch_;
};
// --- data structure used to support InitColAccess --
// column iterator
ColBatchIter col_iter_;
// shared meta info with DMatrix
const learner::MetaInfo &info_;
// row iterator
utils::IIterator<RowBatch> *iter_;
/*! \brief list of row index that are buffered */
std::vector<bst_uint> buffered_rowset_;
// count for column data
std::vector<size_t> col_size_;
};
} // namespace io
} // namespace xgboost
#endif // XGBOOST_IO_SLICE_FMATRIX_INL_HPP_