405 lines
13 KiB
Plaintext
405 lines
13 KiB
Plaintext
// Copyright (c) 2019 by Contributors
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/data.h>
|
|
#include <xgboost/json.h>
|
|
#include <thrust/device_vector.h>
|
|
|
|
#include <memory>
|
|
#include "../../../src/common/bitfield.h"
|
|
#include "../../../src/common/device_helpers.cuh"
|
|
#include "../../../src/data/simple_csr_source.h"
|
|
#include "../../../src/data/columnar.h"
|
|
|
|
namespace xgboost {
|
|
|
|
TEST(ArrayInterfaceHandler, Error) {
|
|
constexpr size_t kRows {16};
|
|
Json column { Object() };
|
|
std::vector<Json> j_shape {Json(Integer(static_cast<Integer::Int>(kRows)))};
|
|
column["shape"] = Array(j_shape);
|
|
std::vector<Json> j_data {
|
|
Json(Integer(reinterpret_cast<Integer::Int>(nullptr))),
|
|
Json(Boolean(false))};
|
|
|
|
auto const& column_obj = get<Object>(column);
|
|
// missing version
|
|
EXPECT_THROW(Columnar c(column_obj), dmlc::Error);
|
|
column["version"] = Integer(static_cast<Integer::Int>(1));
|
|
// missing data
|
|
EXPECT_THROW(Columnar c(column_obj), dmlc::Error);
|
|
column["data"] = j_data;
|
|
// missing typestr
|
|
EXPECT_THROW(Columnar c(column_obj), dmlc::Error);
|
|
column["typestr"] = String("<f4");
|
|
// nullptr is not valid
|
|
EXPECT_THROW(Columnar c(column_obj), dmlc::Error);
|
|
thrust::device_vector<float> d_data(kRows);
|
|
j_data = {Json(Integer(reinterpret_cast<Integer::Int>(d_data.data().get()))),
|
|
Json(Boolean(false))};
|
|
column["data"] = j_data;
|
|
EXPECT_NO_THROW(Columnar c(column_obj));
|
|
|
|
std::vector<Json> j_mask_shape {Json(Integer(static_cast<Integer::Int>(kRows - 1)))};
|
|
column["mask"] = Object();
|
|
column["mask"]["shape"] = j_mask_shape;
|
|
column["mask"]["data"] = j_data;
|
|
column["mask"]["typestr"] = String("<i1");
|
|
column["mask"]["version"] = Integer(static_cast<Integer::Int>(1));
|
|
// shape of mask and data doesn't match.
|
|
EXPECT_THROW(Columnar c(column_obj), dmlc::Error);
|
|
}
|
|
|
|
template <typename T>
|
|
Json GenerateDenseColumn(std::string const& typestr, size_t kRows,
|
|
thrust::device_vector<T>* out_d_data) {
|
|
auto& d_data = *out_d_data;
|
|
Json column { Object() };
|
|
std::vector<Json> j_shape {Json(Integer(static_cast<Integer::Int>(kRows)))};
|
|
column["shape"] = Array(j_shape);
|
|
column["strides"] = Array(std::vector<Json>{Json(Integer(static_cast<Integer::Int>(sizeof(T))))});
|
|
|
|
d_data.resize(kRows);
|
|
for (size_t i = 0; i < d_data.size(); ++i) {
|
|
d_data[i] = i * 2.0;
|
|
}
|
|
|
|
auto p_d_data = dh::Raw(d_data);
|
|
|
|
std::vector<Json> j_data {
|
|
Json(Integer(reinterpret_cast<Integer::Int>(p_d_data))),
|
|
Json(Boolean(false))};
|
|
column["data"] = j_data;
|
|
|
|
column["version"] = Integer(static_cast<Integer::Int>(1));
|
|
column["typestr"] = String(typestr);
|
|
return column;
|
|
}
|
|
|
|
void TestGetElement() {
|
|
thrust::device_vector<float> data;
|
|
auto j_column = GenerateDenseColumn("<f4", 3, &data);
|
|
auto const& column_obj = get<Object const>(j_column);
|
|
Columnar foreign_column(column_obj);
|
|
|
|
EXPECT_NO_THROW({
|
|
dh::LaunchN(0, 1, [=] __device__(size_t idx) {
|
|
KERNEL_CHECK(foreign_column.GetElement(0) == 0.0f);
|
|
KERNEL_CHECK(foreign_column.GetElement(1) == 2.0f);
|
|
KERNEL_CHECK(foreign_column.GetElement(2) == 4.0f);
|
|
});
|
|
});
|
|
}
|
|
|
|
TEST(Columnar, GetElement) { TestGetElement(); }
|
|
|
|
void TestDenseColumn(std::unique_ptr<data::SimpleCSRSource> const& source,
|
|
size_t n_rows, size_t n_cols) {
|
|
auto const& data = source->page_.data.HostVector();
|
|
auto const& offset = source->page_.offset.HostVector();
|
|
|
|
for (size_t i = 0; i < n_rows; i++) {
|
|
auto const idx = i * n_cols;
|
|
auto const e_0 = data.at(idx);
|
|
ASSERT_NEAR(e_0.fvalue, i * 2.0, kRtEps) << "idx: " << idx;
|
|
ASSERT_EQ(e_0.index, 0); // feature 0
|
|
|
|
auto e_1 = data.at(idx+1);
|
|
ASSERT_NEAR(e_1.fvalue, i * 2.0, kRtEps);
|
|
ASSERT_EQ(e_1.index, 1); // feature 1
|
|
}
|
|
ASSERT_EQ(offset.back(), n_rows * n_cols);
|
|
for (size_t i = 0; i < n_rows + 1; ++i) {
|
|
ASSERT_EQ(offset[i], i * n_cols);
|
|
}
|
|
ASSERT_EQ(source->info.num_row_, n_rows);
|
|
ASSERT_EQ(source->info.num_col_, n_cols);
|
|
}
|
|
|
|
TEST(SimpleCSRSource, FromColumnarDense) {
|
|
constexpr size_t kRows {16};
|
|
constexpr size_t kCols {2};
|
|
std::vector<Json> columns;
|
|
thrust::device_vector<float> d_data_0(kRows);
|
|
thrust::device_vector<int32_t> d_data_1(kRows);
|
|
columns.emplace_back(GenerateDenseColumn<float>("<f4", kRows, &d_data_0));
|
|
columns.emplace_back(GenerateDenseColumn<int32_t>("<i4", kRows, &d_data_1));
|
|
|
|
Json column_arr {columns};
|
|
|
|
std::stringstream ss;
|
|
Json::Dump(column_arr, &ss);
|
|
std::string str = ss.str();
|
|
|
|
// no missing value
|
|
{
|
|
std::unique_ptr<data::SimpleCSRSource> source (new data::SimpleCSRSource());
|
|
source->CopyFrom(str.c_str(), false);
|
|
TestDenseColumn(source, kRows, kCols);
|
|
}
|
|
|
|
// with missing value specified
|
|
{
|
|
std::unique_ptr<data::SimpleCSRSource> source (new data::SimpleCSRSource());
|
|
source->CopyFrom(str.c_str(), true, 4.0);
|
|
|
|
auto const& data = source->page_.data.HostVector();
|
|
auto const& offset = source->page_.offset.HostVector();
|
|
ASSERT_EQ(data.size(), kRows * kCols - 2);
|
|
ASSERT_NEAR(data[4].fvalue, 6.0, kRtEps); // kCols * 2
|
|
ASSERT_EQ(offset.back(), 30);
|
|
for (size_t i = 3; i < kRows + 1; ++i) {
|
|
ASSERT_EQ(offset[i], (i - 1) * 2);
|
|
}
|
|
ASSERT_EQ(source->info.num_row_, kRows);
|
|
ASSERT_EQ(source->info.num_col_, kCols);
|
|
}
|
|
|
|
{
|
|
// no missing value, but has NaN
|
|
std::unique_ptr<data::SimpleCSRSource> source (new data::SimpleCSRSource());
|
|
d_data_0[3] = std::numeric_limits<float>::quiet_NaN();
|
|
ASSERT_TRUE(std::isnan(d_data_0[3])); // removes 6.0
|
|
source->CopyFrom(str.c_str(), false);
|
|
|
|
auto const& data = source->page_.data.HostVector();
|
|
auto const& offset = source->page_.offset.HostVector();
|
|
ASSERT_EQ(data.size(), kRows * kCols - 1);
|
|
ASSERT_NEAR(data[7].fvalue, 8.0, kRtEps);
|
|
ASSERT_EQ(source->info.num_row_, kRows);
|
|
ASSERT_EQ(source->info.num_col_, kCols);
|
|
}
|
|
}
|
|
|
|
TEST(SimpleCSRSource, FromColumnarWithEmptyRows) {
|
|
constexpr size_t kRows = 102;
|
|
constexpr size_t kCols = 24;
|
|
|
|
std::vector<Json> v_columns (kCols);
|
|
std::vector<dh::device_vector<float>> columns_data(kCols);
|
|
std::vector<dh::device_vector<RBitField8::value_type>> column_bitfields(kCols);
|
|
|
|
RBitField8::value_type constexpr kUCOne = 1;
|
|
|
|
for (size_t i = 0; i < kCols; ++i) {
|
|
auto& col = v_columns[i];
|
|
col = Object();
|
|
auto& data = columns_data[i];
|
|
data.resize(kRows);
|
|
thrust::sequence(data.begin(), data.end(), 0);
|
|
dh::safe_cuda(cudaDeviceSynchronize());
|
|
dh::safe_cuda(cudaGetLastError());
|
|
|
|
ASSERT_EQ(data.size(), kRows);
|
|
|
|
auto p_d_data = raw_pointer_cast(data.data());
|
|
std::vector<Json> j_data {
|
|
Json(Integer(reinterpret_cast<Integer::Int>(p_d_data))),
|
|
Json(Boolean(false))};
|
|
col["data"] = j_data;
|
|
std::vector<Json> j_shape {Json(Integer(static_cast<Integer::Int>(kRows)))};
|
|
col["shape"] = Array(j_shape);
|
|
col["version"] = Integer(static_cast<Integer::Int>(1));
|
|
col["typestr"] = String("<f4");
|
|
|
|
// Construct the mask object.
|
|
col["mask"] = Object();
|
|
auto& j_mask = col["mask"];
|
|
j_mask["version"] = Integer(static_cast<Integer::Int>(1));
|
|
auto& mask_storage = column_bitfields[i];
|
|
mask_storage.resize(16); // 16 bytes
|
|
|
|
mask_storage[0] = ~(kUCOne << 2); // 3^th row is missing
|
|
mask_storage[1] = ~(kUCOne << 3); // 12^th row is missing
|
|
size_t last_ind = 12;
|
|
mask_storage[last_ind] = ~(kUCOne << 5);
|
|
std::set<size_t> missing_row_index {0, 1, last_ind};
|
|
|
|
for (size_t i = 0; i < mask_storage.size(); ++i) {
|
|
if (missing_row_index.find(i) == missing_row_index.cend()) {
|
|
// all other rows are valid
|
|
mask_storage[i] = ~0;
|
|
}
|
|
}
|
|
|
|
j_mask["data"] = std::vector<Json>{
|
|
Json(Integer(reinterpret_cast<Integer::Int>(mask_storage.data().get()))),
|
|
Json(Boolean(false))};
|
|
j_mask["shape"] = Array(std::vector<Json>{Json(Integer(static_cast<Integer::Int>(kRows)))});
|
|
j_mask["typestr"] = String("|i1");
|
|
}
|
|
|
|
Json column_arr {Array(v_columns)};
|
|
std::stringstream ss;
|
|
Json::Dump(column_arr, &ss);
|
|
std::string str = ss.str();
|
|
std::unique_ptr<data::SimpleCSRSource> source (new data::SimpleCSRSource());
|
|
source->CopyFrom(str.c_str(), false);
|
|
|
|
auto const& data = source->page_.data.HostVector();
|
|
auto const& offset = source->page_.offset.HostVector();
|
|
|
|
ASSERT_EQ(offset.size(), kRows + 1);
|
|
for (size_t i = 1; i < offset.size(); ++i) {
|
|
for (size_t j = offset[i-1]; j < offset[i]; ++j) {
|
|
ASSERT_EQ(data[j].index, j % kCols);
|
|
ASSERT_NEAR(data[j].fvalue, i - 1, kRtEps);
|
|
}
|
|
}
|
|
ASSERT_EQ(source->info.num_row_, kRows);
|
|
}
|
|
|
|
TEST(SimpleCSRSource, FromColumnarSparse) {
|
|
constexpr size_t kRows = 32;
|
|
constexpr size_t kCols = 2;
|
|
RBitField8::value_type constexpr kUCOne = 1;
|
|
|
|
std::vector<dh::device_vector<float>> columns_data(kCols);
|
|
std::vector<dh::device_vector<RBitField8::value_type>> column_bitfields(kCols);
|
|
|
|
{
|
|
// column 0
|
|
auto& mask = column_bitfields[0];
|
|
mask.resize(8);
|
|
|
|
for (size_t j = 0; j < mask.size(); ++j) {
|
|
mask[j] = ~0;
|
|
}
|
|
// the 2^th entry of first column is invalid
|
|
// [0 0 0 0 0 1 0 0]
|
|
mask[0] = ~(kUCOne << 2);
|
|
}
|
|
{
|
|
// column 1
|
|
auto& mask = column_bitfields[1];
|
|
mask.resize(8);
|
|
|
|
for (size_t j = 0; j < mask.size(); ++j) {
|
|
mask[j] = ~0;
|
|
}
|
|
// the 19^th entry of second column is invalid
|
|
// [~0~], [~0~], [0 0 0 0 1 0 0 0]
|
|
mask[2] = ~(kUCOne << 3);
|
|
}
|
|
|
|
for (size_t c = 0; c < kCols; ++c) {
|
|
columns_data[c].resize(kRows);
|
|
thrust::sequence(columns_data[c].begin(), columns_data[c].end(), 0);
|
|
}
|
|
|
|
std::vector<Json> j_columns(kCols);
|
|
|
|
for (size_t c = 0; c < kCols; ++c) {
|
|
auto& column = j_columns[c];
|
|
column = Object();
|
|
column["version"] = Integer(static_cast<Integer::Int>(1));
|
|
column["typestr"] = String("<f4");
|
|
auto p_d_data = raw_pointer_cast(columns_data[c].data());
|
|
std::vector<Json> j_data {
|
|
Json(Integer(reinterpret_cast<Integer::Int>(p_d_data))),
|
|
Json(Boolean(false))};
|
|
column["data"] = j_data;
|
|
std::vector<Json> j_shape {Json(Integer(static_cast<Integer::Int>(kRows)))};
|
|
column["shape"] = Array(j_shape);
|
|
column["version"] = Integer(static_cast<Integer::Int>(1));
|
|
column["typestr"] = String("<f4");
|
|
|
|
column["mask"] = Object();
|
|
auto& j_mask = column["mask"];
|
|
j_mask["version"] = Integer(static_cast<Integer::Int>(1));
|
|
j_mask["data"] = std::vector<Json>{
|
|
Json(Integer(reinterpret_cast<Integer::Int>(column_bitfields[c].data().get()))),
|
|
Json(Boolean(false))};
|
|
j_mask["shape"] = Array(std::vector<Json>{Json(Integer(static_cast<Integer::Int>(kRows)))});
|
|
j_mask["typestr"] = String("|i1");
|
|
}
|
|
|
|
Json column_arr {Array(j_columns)};
|
|
|
|
std::stringstream ss;
|
|
Json::Dump(column_arr, &ss);
|
|
std::string str = ss.str();
|
|
|
|
{
|
|
std::unique_ptr<data::SimpleCSRSource> source (new data::SimpleCSRSource());
|
|
source->CopyFrom(str.c_str(), false);
|
|
|
|
auto const& data = source->page_.data.HostVector();
|
|
auto const& offset = source->page_.offset.HostVector();
|
|
|
|
ASSERT_EQ(offset.size(), kRows + 1);
|
|
ASSERT_EQ(data[4].index, 1);
|
|
ASSERT_EQ(data[4].fvalue, 2);
|
|
ASSERT_EQ(data[37].index, 0);
|
|
ASSERT_EQ(data[37].fvalue, 19);
|
|
}
|
|
|
|
{
|
|
// with missing value
|
|
std::unique_ptr<data::SimpleCSRSource> source (new data::SimpleCSRSource());
|
|
source->CopyFrom(str.c_str(), true, /*missing=*/2.0);
|
|
|
|
auto const& data = source->page_.data.HostVector();
|
|
ASSERT_NE(data[4].fvalue, 2.0);
|
|
}
|
|
|
|
{
|
|
// no missing value, but has NaN
|
|
std::unique_ptr<data::SimpleCSRSource> source (new data::SimpleCSRSource());
|
|
columns_data[0][4] = std::numeric_limits<float>::quiet_NaN(); // 0^th column 4^th row
|
|
ASSERT_TRUE(std::isnan(columns_data[0][4]));
|
|
source->CopyFrom(str.c_str(), false);
|
|
|
|
auto const& data = source->page_.data.HostVector();
|
|
auto const& offset = source->page_.offset.HostVector();
|
|
// Two invalid entries and one NaN, in CSC
|
|
// 0^th column: 0, 1, 4, 5, 6, ..., kRows
|
|
// 1^th column: 0, 1, 2, 3, ..., 19, 21, ..., kRows
|
|
// Turning it into CSR:
|
|
// | 0, 0 | 1, 1 | 2 | 3, 3 | 4 | ...
|
|
ASSERT_EQ(data.size(), kRows * kCols - 3);
|
|
ASSERT_EQ(data[4].index, 1); // from 1^th column
|
|
ASSERT_EQ(data[5].fvalue, 3.0);
|
|
ASSERT_EQ(data[7].index, 1); // from 1^th column
|
|
ASSERT_EQ(data[7].fvalue, 4.0);
|
|
|
|
ASSERT_EQ(data[offset[2]].fvalue, 2.0);
|
|
ASSERT_EQ(data[offset[4]].fvalue, 4.0);
|
|
}
|
|
|
|
{
|
|
// with NaN as missing value
|
|
// NaN is already set up by above test
|
|
std::unique_ptr<data::SimpleCSRSource> source (new data::SimpleCSRSource());
|
|
source->CopyFrom(str.c_str(), true,
|
|
/*missing=*/std::numeric_limits<float>::quiet_NaN());
|
|
|
|
auto const& data = source->page_.data.HostVector();
|
|
ASSERT_EQ(data.size(), kRows * kCols - 1);
|
|
ASSERT_EQ(data[8].fvalue, 4.0);
|
|
}
|
|
}
|
|
|
|
TEST(SimpleCSRSource, Types) {
|
|
// Test with different types of different size
|
|
constexpr size_t kRows {16};
|
|
constexpr size_t kCols {2};
|
|
std::vector<Json> columns;
|
|
thrust::device_vector<double> d_data_0(kRows);
|
|
thrust::device_vector<uint32_t> d_data_1(kRows);
|
|
|
|
columns.emplace_back(GenerateDenseColumn<double>("<f8", kRows, &d_data_0));
|
|
columns.emplace_back(GenerateDenseColumn<uint32_t>("<u4", kRows, &d_data_1));
|
|
|
|
Json column_arr {columns};
|
|
|
|
std::stringstream ss;
|
|
Json::Dump(column_arr, &ss);
|
|
std::string str = ss.str();
|
|
|
|
std::unique_ptr<data::SimpleCSRSource> source (new data::SimpleCSRSource());
|
|
source->CopyFrom(str.c_str(), false);
|
|
TestDenseColumn(source, kRows, kCols);
|
|
}
|
|
|
|
} // namespace xgboost
|