xgboost/src/common/column_matrix.h
Jiaming Yuan 4d81c741e9
External memory support for hist (#7531)
* Generate column matrix from gHistIndex.
* Avoid synchronization with the sparse page once the cache is written.
* Cleanups: Remove member variables/functions, change the update routine to look like approx and gpu_hist.
* Remove pruner.
2022-03-22 00:13:20 +08:00

439 lines
15 KiB
C++

/*!
* Copyright 2017-2022 by Contributors
* \file column_matrix.h
* \brief Utility for fast column-wise access
* \author Philip Cho
*/
#ifndef XGBOOST_COMMON_COLUMN_MATRIX_H_
#define XGBOOST_COMMON_COLUMN_MATRIX_H_
#include <dmlc/endian.h>
#include <algorithm>
#include <limits>
#include <memory>
#include <vector>
#include "../data/gradient_index.h"
#include "hist_util.h"
namespace xgboost {
namespace common {
class ColumnMatrix;
/*! \brief column type */
enum ColumnType : uint8_t { kDenseColumn, kSparseColumn };
/*! \brief a column storage, to be used with ApplySplit. Note that each
bin id is stored as index[i] + index_base.
Different types of column index for each column allow
to reduce the memory usage. */
template <typename BinIdxType>
class Column {
public:
static constexpr int32_t kMissingId = -1;
Column(ColumnType type, common::Span<const BinIdxType> index, const uint32_t index_base)
: type_(type), index_(index), index_base_(index_base) {}
virtual ~Column() = default;
uint32_t GetGlobalBinIdx(size_t idx) const {
return index_base_ + static_cast<uint32_t>(index_[idx]);
}
BinIdxType GetFeatureBinIdx(size_t idx) const { return index_[idx]; }
uint32_t GetBaseIdx() const { return index_base_; }
common::Span<const BinIdxType> GetFeatureBinIdxPtr() const { return index_; }
ColumnType GetType() const { return type_; }
/* returns number of elements in column */
size_t Size() const { return index_.size(); }
private:
/* type of column */
ColumnType type_;
/* bin indexes in range [0, max_bins - 1] */
common::Span<const BinIdxType> index_;
/* bin index offset for specific feature */
const uint32_t index_base_;
};
template <typename BinIdxType>
class SparseColumn : public Column<BinIdxType> {
public:
SparseColumn(ColumnType type, common::Span<const BinIdxType> index, uint32_t index_base,
common::Span<const size_t> row_ind)
: Column<BinIdxType>(type, index, index_base), row_ind_(row_ind) {}
const size_t* GetRowData() const { return row_ind_.data(); }
int32_t GetBinIdx(size_t rid, size_t* state) const {
const size_t column_size = this->Size();
if (!((*state) < column_size)) {
return this->kMissingId;
}
while ((*state) < column_size && GetRowIdx(*state) < rid) {
++(*state);
}
if (((*state) < column_size) && GetRowIdx(*state) == rid) {
return this->GetGlobalBinIdx(*state);
} else {
return this->kMissingId;
}
}
size_t GetInitialState(const size_t first_row_id) const {
const size_t* row_data = GetRowData();
const size_t column_size = this->Size();
// search first nonzero row with index >= rid_span.front()
const size_t* p = std::lower_bound(row_data, row_data + column_size, first_row_id);
// column_size if all messing
return p - row_data;
}
size_t GetRowIdx(size_t idx) const { return row_ind_.data()[idx]; }
private:
/* indexes of rows */
common::Span<const size_t> row_ind_;
};
template <typename BinIdxType, bool any_missing>
class DenseColumn : public Column<BinIdxType> {
public:
DenseColumn(ColumnType type, common::Span<const BinIdxType> index, uint32_t index_base,
const std::vector<bool>& missing_flags, size_t feature_offset)
: Column<BinIdxType>(type, index, index_base),
missing_flags_(missing_flags),
feature_offset_(feature_offset) {}
bool IsMissing(size_t idx) const { return missing_flags_[feature_offset_ + idx]; }
int32_t GetBinIdx(size_t idx, size_t* state) const {
if (any_missing) {
return IsMissing(idx) ? this->kMissingId : this->GetGlobalBinIdx(idx);
} else {
return this->GetGlobalBinIdx(idx);
}
}
size_t GetInitialState(const size_t first_row_id) const { return 0; }
private:
/* flags for missing values in dense columns */
const std::vector<bool>& missing_flags_;
size_t feature_offset_;
};
/*! \brief a collection of columns, with support for construction from
GHistIndexMatrix. */
class ColumnMatrix {
public:
// get number of features
bst_feature_t GetNumFeature() const { return static_cast<bst_feature_t>(type_.size()); }
// construct column matrix from GHistIndexMatrix
inline void Init(SparsePage const& page, const GHistIndexMatrix& gmat, double sparse_threshold,
int32_t n_threads) {
auto const nfeature = static_cast<bst_feature_t>(gmat.cut.Ptrs().size() - 1);
const size_t nrow = gmat.row_ptr.size() - 1;
// identify type of each column
feature_counts_.resize(nfeature);
type_.resize(nfeature);
std::fill(feature_counts_.begin(), feature_counts_.end(), 0);
uint32_t max_val = std::numeric_limits<uint32_t>::max();
for (bst_feature_t fid = 0; fid < nfeature; ++fid) {
CHECK_LE(gmat.cut.Ptrs()[fid + 1] - gmat.cut.Ptrs()[fid], max_val);
}
bool all_dense = gmat.IsDense();
gmat.GetFeatureCounts(&feature_counts_[0]);
// classify features
for (bst_feature_t fid = 0; fid < nfeature; ++fid) {
if (static_cast<double>(feature_counts_[fid]) < sparse_threshold * nrow) {
type_[fid] = kSparseColumn;
all_dense = false;
} else {
type_[fid] = kDenseColumn;
}
}
// want to compute storage boundary for each feature
// using variants of prefix sum scan
feature_offsets_.resize(nfeature + 1);
size_t accum_index_ = 0;
feature_offsets_[0] = accum_index_;
for (bst_feature_t fid = 1; fid < nfeature + 1; ++fid) {
if (type_[fid - 1] == kDenseColumn) {
accum_index_ += static_cast<size_t>(nrow);
} else {
accum_index_ += feature_counts_[fid - 1];
}
feature_offsets_[fid] = accum_index_;
}
SetTypeSize(gmat.max_num_bins);
index_.resize(feature_offsets_[nfeature] * bins_type_size_, 0);
if (!all_dense) {
row_ind_.resize(feature_offsets_[nfeature]);
}
// store least bin id for each feature
index_base_ = const_cast<uint32_t*>(gmat.cut.Ptrs().data());
const bool noMissingValues = NoMissingValues(gmat.row_ptr[nrow], nrow, nfeature);
any_missing_ = !noMissingValues;
missing_flags_.clear();
if (noMissingValues) {
missing_flags_.resize(feature_offsets_[nfeature], false);
} else {
missing_flags_.resize(feature_offsets_[nfeature], true);
}
// pre-fill index_ for dense columns
if (all_dense) {
BinTypeSize gmat_bin_size = gmat.index.GetBinTypeSize();
if (gmat_bin_size == kUint8BinsTypeSize) {
SetIndexAllDense(page, gmat.index.data<uint8_t>(), gmat, nrow, nfeature, noMissingValues,
n_threads);
} else if (gmat_bin_size == kUint16BinsTypeSize) {
SetIndexAllDense(page, gmat.index.data<uint16_t>(), gmat, nrow, nfeature, noMissingValues,
n_threads);
} else {
CHECK_EQ(gmat_bin_size, kUint32BinsTypeSize);
SetIndexAllDense(page, gmat.index.data<uint32_t>(), gmat, nrow, nfeature, noMissingValues,
n_threads);
}
/* For sparse DMatrix gmat.index.getBinTypeSize() returns always kUint32BinsTypeSize
but for ColumnMatrix we still have a chance to reduce the memory consumption */
} else {
if (bins_type_size_ == kUint8BinsTypeSize) {
SetIndex<uint8_t>(page, gmat.index.data<uint32_t>(), gmat, nfeature);
} else if (bins_type_size_ == kUint16BinsTypeSize) {
SetIndex<uint16_t>(page, gmat.index.data<uint32_t>(), gmat, nfeature);
} else {
CHECK_EQ(bins_type_size_, kUint32BinsTypeSize);
SetIndex<uint32_t>(page, gmat.index.data<uint32_t>(), gmat, nfeature);
}
}
}
/* Set the number of bytes based on numeric limit of maximum number of bins provided by user */
void SetTypeSize(size_t max_num_bins) {
if ((max_num_bins - 1) <= static_cast<int>(std::numeric_limits<uint8_t>::max())) {
bins_type_size_ = kUint8BinsTypeSize;
} else if ((max_num_bins - 1) <= static_cast<int>(std::numeric_limits<uint16_t>::max())) {
bins_type_size_ = kUint16BinsTypeSize;
} else {
bins_type_size_ = kUint32BinsTypeSize;
}
}
/* Fetch an individual column. This code should be used with type swith
to determine type of bin id's */
template <typename BinIdxType, bool any_missing>
std::unique_ptr<const Column<BinIdxType> > GetColumn(unsigned fid) const {
CHECK_EQ(sizeof(BinIdxType), bins_type_size_);
const size_t feature_offset = feature_offsets_[fid]; // to get right place for certain feature
const size_t column_size = feature_offsets_[fid + 1] - feature_offset;
common::Span<const BinIdxType> bin_index = {
reinterpret_cast<const BinIdxType*>(&index_[feature_offset * bins_type_size_]),
column_size};
std::unique_ptr<const Column<BinIdxType> > res;
if (type_[fid] == ColumnType::kDenseColumn) {
CHECK_EQ(any_missing, any_missing_);
res.reset(new DenseColumn<BinIdxType, any_missing>(type_[fid], bin_index, index_base_[fid],
missing_flags_, feature_offset));
} else {
res.reset(new SparseColumn<BinIdxType>(type_[fid], bin_index, index_base_[fid],
{&row_ind_[feature_offset], column_size}));
}
return res;
}
template <typename T>
inline void SetIndexAllDense(SparsePage const& page, T const* index, const GHistIndexMatrix& gmat,
const size_t nrow, const size_t nfeature, const bool noMissingValues,
int32_t n_threads) {
T* local_index = reinterpret_cast<T*>(&index_[0]);
/* missing values make sense only for column with type kDenseColumn,
and if no missing values were observed it could be handled much faster. */
if (noMissingValues) {
ParallelFor(nrow, n_threads, [&](auto rid) {
const size_t ibegin = rid * nfeature;
const size_t iend = (rid + 1) * nfeature;
size_t j = 0;
for (size_t i = ibegin; i < iend; ++i, ++j) {
const size_t idx = feature_offsets_[j];
local_index[idx + rid] = index[i];
}
});
} else {
/* to handle rows in all batches, sum of all batch sizes equal to gmat.row_ptr.size() - 1 */
auto get_bin_idx = [&](auto bin_id, auto rid, bst_feature_t fid) {
// T* begin = &local_index[feature_offsets_[fid]];
const size_t idx = feature_offsets_[fid];
/* rbegin allows to store indexes from specific SparsePage batch */
local_index[idx + rid] = bin_id;
missing_flags_[idx + rid] = false;
};
this->SetIndexSparse(page, index, gmat, nfeature, get_bin_idx);
}
}
// FIXME(jiamingy): In the future we might want to simply use binary search to simplify
// this and remove the dependency on SparsePage. This way we can have quantilized
// matrix for host similar to `DeviceQuantileDMatrix`.
template <typename T, typename BinFn>
void SetIndexSparse(SparsePage const& batch, T* index, const GHistIndexMatrix& gmat,
const size_t nfeature, BinFn&& assign_bin) {
std::vector<size_t> num_nonzeros(nfeature, 0ul);
const xgboost::Entry* data_ptr = batch.data.HostVector().data();
const std::vector<bst_row_t>& offset_vec = batch.offset.HostVector();
auto rbegin = 0;
const size_t batch_size = gmat.Size();
CHECK_LT(batch_size, offset_vec.size());
for (size_t rid = 0; rid < batch_size; ++rid) {
const size_t ibegin = gmat.row_ptr[rbegin + rid];
const size_t iend = gmat.row_ptr[rbegin + rid + 1];
const size_t size = offset_vec[rid + 1] - offset_vec[rid];
SparsePage::Inst inst = {data_ptr + offset_vec[rid], size};
CHECK_EQ(ibegin + inst.size(), iend);
size_t j = 0;
for (size_t i = ibegin; i < iend; ++i, ++j) {
const uint32_t bin_id = index[i];
auto fid = inst[j].index;
assign_bin(bin_id, rid, fid);
}
}
}
template <typename T>
inline void SetIndex(SparsePage const& page, uint32_t const* index, const GHistIndexMatrix& gmat,
const size_t nfeature) {
T* local_index = reinterpret_cast<T*>(&index_[0]);
std::vector<size_t> num_nonzeros;
num_nonzeros.resize(nfeature);
std::fill(num_nonzeros.begin(), num_nonzeros.end(), 0);
auto get_bin_idx = [&](auto bin_id, auto rid, bst_feature_t fid) {
if (type_[fid] == kDenseColumn) {
T* begin = &local_index[feature_offsets_[fid]];
begin[rid] = bin_id - index_base_[fid];
missing_flags_[feature_offsets_[fid] + rid] = false;
} else {
T* begin = &local_index[feature_offsets_[fid]];
begin[num_nonzeros[fid]] = bin_id - index_base_[fid];
row_ind_[feature_offsets_[fid] + num_nonzeros[fid]] = rid;
++num_nonzeros[fid];
}
};
this->SetIndexSparse(page, index, gmat, nfeature, get_bin_idx);
}
BinTypeSize GetTypeSize() const { return bins_type_size_; }
// This is just an utility function
bool NoMissingValues(const size_t n_elements, const size_t n_row, const size_t n_features) {
return n_elements == n_features * n_row;
}
// And this returns part of state
bool AnyMissing() const { return any_missing_; }
// IO procedures for external memory.
bool Read(dmlc::SeekStream* fi, uint32_t const* index_base) {
fi->Read(&index_);
fi->Read(&feature_counts_);
#if !DMLC_LITTLE_ENDIAN
// s390x
std::vector<std::underlying_type<ColumnType>::type> int_types;
fi->Read(&int_types);
type_.resize(int_types.size());
std::transform(
int_types.begin(), int_types.end(), type_.begin(),
[](std::underlying_type<ColumnType>::type i) { return static_cast<ColumnType>(i); });
#else
fi->Read(&type_);
#endif // !DMLC_LITTLE_ENDIAN
fi->Read(&row_ind_);
fi->Read(&feature_offsets_);
index_base_ = index_base;
#if !DMLC_LITTLE_ENDIAN
std::underlying_type<BinTypeSize>::type v;
fi->Read(&v);
bins_type_size_ = static_cast<BinTypeSize>(v);
#else
fi->Read(&bins_type_size_);
#endif
fi->Read(&any_missing_);
return true;
}
size_t Write(dmlc::Stream* fo) const {
size_t bytes{0};
auto write_vec = [&](auto const& vec) {
fo->Write(vec);
bytes += vec.size() * sizeof(typename std::remove_reference_t<decltype(vec)>::value_type) +
sizeof(uint64_t);
};
write_vec(index_);
write_vec(feature_counts_);
#if !DMLC_LITTLE_ENDIAN
// s390x
std::vector<std::underlying_type<ColumnType>::type> int_types(type_.size());
std::transform(type_.begin(), type_.end(), int_types.begin(), [](ColumnType t) {
return static_cast<std::underlying_type<ColumnType>::type>(t);
});
write_vec(int_types);
#else
write_vec(type_);
#endif // !DMLC_LITTLE_ENDIAN
write_vec(row_ind_);
write_vec(feature_offsets_);
#if !DMLC_LITTLE_ENDIAN
auto v = static_cast<std::underlying_type<BinTypeSize>::type>(bins_type_size_);
fo->Write(v);
#else
fo->Write(bins_type_size_);
#endif // DMLC_LITTLE_ENDIAN
bytes += sizeof(bins_type_size_);
fo->Write(any_missing_);
bytes += sizeof(any_missing_);
return bytes;
}
private:
std::vector<uint8_t> index_;
std::vector<size_t> feature_counts_;
std::vector<ColumnType> type_;
std::vector<size_t> row_ind_;
/* indicate where each column's index and row_ind is stored. */
std::vector<size_t> feature_offsets_;
// index_base_[fid]: least bin id for feature fid
uint32_t const* index_base_;
std::vector<bool> missing_flags_;
BinTypeSize bins_type_size_;
bool any_missing_;
};
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_COLUMN_MATRIX_H_