* Generate column matrix from gHistIndex. * Avoid synchronization with the sparse page once the cache is written. * Cleanups: Remove member variables/functions, change the update routine to look like approx and gpu_hist. * Remove pruner.
439 lines
15 KiB
C++
439 lines
15 KiB
C++
/*!
|
|
* Copyright 2017-2022 by Contributors
|
|
* \file column_matrix.h
|
|
* \brief Utility for fast column-wise access
|
|
* \author Philip Cho
|
|
*/
|
|
|
|
#ifndef XGBOOST_COMMON_COLUMN_MATRIX_H_
|
|
#define XGBOOST_COMMON_COLUMN_MATRIX_H_
|
|
|
|
#include <dmlc/endian.h>
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include "../data/gradient_index.h"
|
|
#include "hist_util.h"
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
class ColumnMatrix;
|
|
/*! \brief column type */
|
|
enum ColumnType : uint8_t { kDenseColumn, kSparseColumn };
|
|
|
|
/*! \brief a column storage, to be used with ApplySplit. Note that each
|
|
bin id is stored as index[i] + index_base.
|
|
Different types of column index for each column allow
|
|
to reduce the memory usage. */
|
|
template <typename BinIdxType>
|
|
class Column {
|
|
public:
|
|
static constexpr int32_t kMissingId = -1;
|
|
|
|
Column(ColumnType type, common::Span<const BinIdxType> index, const uint32_t index_base)
|
|
: type_(type), index_(index), index_base_(index_base) {}
|
|
|
|
virtual ~Column() = default;
|
|
|
|
uint32_t GetGlobalBinIdx(size_t idx) const {
|
|
return index_base_ + static_cast<uint32_t>(index_[idx]);
|
|
}
|
|
|
|
BinIdxType GetFeatureBinIdx(size_t idx) const { return index_[idx]; }
|
|
|
|
uint32_t GetBaseIdx() const { return index_base_; }
|
|
|
|
common::Span<const BinIdxType> GetFeatureBinIdxPtr() const { return index_; }
|
|
|
|
ColumnType GetType() const { return type_; }
|
|
|
|
/* returns number of elements in column */
|
|
size_t Size() const { return index_.size(); }
|
|
|
|
private:
|
|
/* type of column */
|
|
ColumnType type_;
|
|
/* bin indexes in range [0, max_bins - 1] */
|
|
common::Span<const BinIdxType> index_;
|
|
/* bin index offset for specific feature */
|
|
const uint32_t index_base_;
|
|
};
|
|
|
|
template <typename BinIdxType>
|
|
class SparseColumn : public Column<BinIdxType> {
|
|
public:
|
|
SparseColumn(ColumnType type, common::Span<const BinIdxType> index, uint32_t index_base,
|
|
common::Span<const size_t> row_ind)
|
|
: Column<BinIdxType>(type, index, index_base), row_ind_(row_ind) {}
|
|
|
|
const size_t* GetRowData() const { return row_ind_.data(); }
|
|
|
|
int32_t GetBinIdx(size_t rid, size_t* state) const {
|
|
const size_t column_size = this->Size();
|
|
if (!((*state) < column_size)) {
|
|
return this->kMissingId;
|
|
}
|
|
while ((*state) < column_size && GetRowIdx(*state) < rid) {
|
|
++(*state);
|
|
}
|
|
if (((*state) < column_size) && GetRowIdx(*state) == rid) {
|
|
return this->GetGlobalBinIdx(*state);
|
|
} else {
|
|
return this->kMissingId;
|
|
}
|
|
}
|
|
|
|
size_t GetInitialState(const size_t first_row_id) const {
|
|
const size_t* row_data = GetRowData();
|
|
const size_t column_size = this->Size();
|
|
// search first nonzero row with index >= rid_span.front()
|
|
const size_t* p = std::lower_bound(row_data, row_data + column_size, first_row_id);
|
|
// column_size if all messing
|
|
return p - row_data;
|
|
}
|
|
|
|
size_t GetRowIdx(size_t idx) const { return row_ind_.data()[idx]; }
|
|
|
|
private:
|
|
/* indexes of rows */
|
|
common::Span<const size_t> row_ind_;
|
|
};
|
|
|
|
template <typename BinIdxType, bool any_missing>
|
|
class DenseColumn : public Column<BinIdxType> {
|
|
public:
|
|
DenseColumn(ColumnType type, common::Span<const BinIdxType> index, uint32_t index_base,
|
|
const std::vector<bool>& missing_flags, size_t feature_offset)
|
|
: Column<BinIdxType>(type, index, index_base),
|
|
missing_flags_(missing_flags),
|
|
feature_offset_(feature_offset) {}
|
|
bool IsMissing(size_t idx) const { return missing_flags_[feature_offset_ + idx]; }
|
|
|
|
int32_t GetBinIdx(size_t idx, size_t* state) const {
|
|
if (any_missing) {
|
|
return IsMissing(idx) ? this->kMissingId : this->GetGlobalBinIdx(idx);
|
|
} else {
|
|
return this->GetGlobalBinIdx(idx);
|
|
}
|
|
}
|
|
|
|
size_t GetInitialState(const size_t first_row_id) const { return 0; }
|
|
|
|
private:
|
|
/* flags for missing values in dense columns */
|
|
const std::vector<bool>& missing_flags_;
|
|
size_t feature_offset_;
|
|
};
|
|
|
|
/*! \brief a collection of columns, with support for construction from
|
|
GHistIndexMatrix. */
|
|
class ColumnMatrix {
|
|
public:
|
|
// get number of features
|
|
bst_feature_t GetNumFeature() const { return static_cast<bst_feature_t>(type_.size()); }
|
|
|
|
// construct column matrix from GHistIndexMatrix
|
|
inline void Init(SparsePage const& page, const GHistIndexMatrix& gmat, double sparse_threshold,
|
|
int32_t n_threads) {
|
|
auto const nfeature = static_cast<bst_feature_t>(gmat.cut.Ptrs().size() - 1);
|
|
const size_t nrow = gmat.row_ptr.size() - 1;
|
|
// identify type of each column
|
|
feature_counts_.resize(nfeature);
|
|
type_.resize(nfeature);
|
|
std::fill(feature_counts_.begin(), feature_counts_.end(), 0);
|
|
uint32_t max_val = std::numeric_limits<uint32_t>::max();
|
|
for (bst_feature_t fid = 0; fid < nfeature; ++fid) {
|
|
CHECK_LE(gmat.cut.Ptrs()[fid + 1] - gmat.cut.Ptrs()[fid], max_val);
|
|
}
|
|
bool all_dense = gmat.IsDense();
|
|
gmat.GetFeatureCounts(&feature_counts_[0]);
|
|
// classify features
|
|
for (bst_feature_t fid = 0; fid < nfeature; ++fid) {
|
|
if (static_cast<double>(feature_counts_[fid]) < sparse_threshold * nrow) {
|
|
type_[fid] = kSparseColumn;
|
|
all_dense = false;
|
|
} else {
|
|
type_[fid] = kDenseColumn;
|
|
}
|
|
}
|
|
|
|
// want to compute storage boundary for each feature
|
|
// using variants of prefix sum scan
|
|
feature_offsets_.resize(nfeature + 1);
|
|
size_t accum_index_ = 0;
|
|
feature_offsets_[0] = accum_index_;
|
|
for (bst_feature_t fid = 1; fid < nfeature + 1; ++fid) {
|
|
if (type_[fid - 1] == kDenseColumn) {
|
|
accum_index_ += static_cast<size_t>(nrow);
|
|
} else {
|
|
accum_index_ += feature_counts_[fid - 1];
|
|
}
|
|
feature_offsets_[fid] = accum_index_;
|
|
}
|
|
|
|
SetTypeSize(gmat.max_num_bins);
|
|
|
|
index_.resize(feature_offsets_[nfeature] * bins_type_size_, 0);
|
|
if (!all_dense) {
|
|
row_ind_.resize(feature_offsets_[nfeature]);
|
|
}
|
|
|
|
// store least bin id for each feature
|
|
index_base_ = const_cast<uint32_t*>(gmat.cut.Ptrs().data());
|
|
|
|
const bool noMissingValues = NoMissingValues(gmat.row_ptr[nrow], nrow, nfeature);
|
|
any_missing_ = !noMissingValues;
|
|
|
|
missing_flags_.clear();
|
|
if (noMissingValues) {
|
|
missing_flags_.resize(feature_offsets_[nfeature], false);
|
|
} else {
|
|
missing_flags_.resize(feature_offsets_[nfeature], true);
|
|
}
|
|
|
|
// pre-fill index_ for dense columns
|
|
if (all_dense) {
|
|
BinTypeSize gmat_bin_size = gmat.index.GetBinTypeSize();
|
|
if (gmat_bin_size == kUint8BinsTypeSize) {
|
|
SetIndexAllDense(page, gmat.index.data<uint8_t>(), gmat, nrow, nfeature, noMissingValues,
|
|
n_threads);
|
|
} else if (gmat_bin_size == kUint16BinsTypeSize) {
|
|
SetIndexAllDense(page, gmat.index.data<uint16_t>(), gmat, nrow, nfeature, noMissingValues,
|
|
n_threads);
|
|
} else {
|
|
CHECK_EQ(gmat_bin_size, kUint32BinsTypeSize);
|
|
SetIndexAllDense(page, gmat.index.data<uint32_t>(), gmat, nrow, nfeature, noMissingValues,
|
|
n_threads);
|
|
}
|
|
/* For sparse DMatrix gmat.index.getBinTypeSize() returns always kUint32BinsTypeSize
|
|
but for ColumnMatrix we still have a chance to reduce the memory consumption */
|
|
} else {
|
|
if (bins_type_size_ == kUint8BinsTypeSize) {
|
|
SetIndex<uint8_t>(page, gmat.index.data<uint32_t>(), gmat, nfeature);
|
|
} else if (bins_type_size_ == kUint16BinsTypeSize) {
|
|
SetIndex<uint16_t>(page, gmat.index.data<uint32_t>(), gmat, nfeature);
|
|
} else {
|
|
CHECK_EQ(bins_type_size_, kUint32BinsTypeSize);
|
|
SetIndex<uint32_t>(page, gmat.index.data<uint32_t>(), gmat, nfeature);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set the number of bytes based on numeric limit of maximum number of bins provided by user */
|
|
void SetTypeSize(size_t max_num_bins) {
|
|
if ((max_num_bins - 1) <= static_cast<int>(std::numeric_limits<uint8_t>::max())) {
|
|
bins_type_size_ = kUint8BinsTypeSize;
|
|
} else if ((max_num_bins - 1) <= static_cast<int>(std::numeric_limits<uint16_t>::max())) {
|
|
bins_type_size_ = kUint16BinsTypeSize;
|
|
} else {
|
|
bins_type_size_ = kUint32BinsTypeSize;
|
|
}
|
|
}
|
|
|
|
/* Fetch an individual column. This code should be used with type swith
|
|
to determine type of bin id's */
|
|
template <typename BinIdxType, bool any_missing>
|
|
std::unique_ptr<const Column<BinIdxType> > GetColumn(unsigned fid) const {
|
|
CHECK_EQ(sizeof(BinIdxType), bins_type_size_);
|
|
|
|
const size_t feature_offset = feature_offsets_[fid]; // to get right place for certain feature
|
|
const size_t column_size = feature_offsets_[fid + 1] - feature_offset;
|
|
common::Span<const BinIdxType> bin_index = {
|
|
reinterpret_cast<const BinIdxType*>(&index_[feature_offset * bins_type_size_]),
|
|
column_size};
|
|
std::unique_ptr<const Column<BinIdxType> > res;
|
|
if (type_[fid] == ColumnType::kDenseColumn) {
|
|
CHECK_EQ(any_missing, any_missing_);
|
|
res.reset(new DenseColumn<BinIdxType, any_missing>(type_[fid], bin_index, index_base_[fid],
|
|
missing_flags_, feature_offset));
|
|
} else {
|
|
res.reset(new SparseColumn<BinIdxType>(type_[fid], bin_index, index_base_[fid],
|
|
{&row_ind_[feature_offset], column_size}));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
inline void SetIndexAllDense(SparsePage const& page, T const* index, const GHistIndexMatrix& gmat,
|
|
const size_t nrow, const size_t nfeature, const bool noMissingValues,
|
|
int32_t n_threads) {
|
|
T* local_index = reinterpret_cast<T*>(&index_[0]);
|
|
|
|
/* missing values make sense only for column with type kDenseColumn,
|
|
and if no missing values were observed it could be handled much faster. */
|
|
if (noMissingValues) {
|
|
ParallelFor(nrow, n_threads, [&](auto rid) {
|
|
const size_t ibegin = rid * nfeature;
|
|
const size_t iend = (rid + 1) * nfeature;
|
|
size_t j = 0;
|
|
for (size_t i = ibegin; i < iend; ++i, ++j) {
|
|
const size_t idx = feature_offsets_[j];
|
|
local_index[idx + rid] = index[i];
|
|
}
|
|
});
|
|
} else {
|
|
/* to handle rows in all batches, sum of all batch sizes equal to gmat.row_ptr.size() - 1 */
|
|
auto get_bin_idx = [&](auto bin_id, auto rid, bst_feature_t fid) {
|
|
// T* begin = &local_index[feature_offsets_[fid]];
|
|
const size_t idx = feature_offsets_[fid];
|
|
/* rbegin allows to store indexes from specific SparsePage batch */
|
|
local_index[idx + rid] = bin_id;
|
|
|
|
missing_flags_[idx + rid] = false;
|
|
};
|
|
this->SetIndexSparse(page, index, gmat, nfeature, get_bin_idx);
|
|
}
|
|
}
|
|
|
|
// FIXME(jiamingy): In the future we might want to simply use binary search to simplify
|
|
// this and remove the dependency on SparsePage. This way we can have quantilized
|
|
// matrix for host similar to `DeviceQuantileDMatrix`.
|
|
template <typename T, typename BinFn>
|
|
void SetIndexSparse(SparsePage const& batch, T* index, const GHistIndexMatrix& gmat,
|
|
const size_t nfeature, BinFn&& assign_bin) {
|
|
std::vector<size_t> num_nonzeros(nfeature, 0ul);
|
|
const xgboost::Entry* data_ptr = batch.data.HostVector().data();
|
|
const std::vector<bst_row_t>& offset_vec = batch.offset.HostVector();
|
|
auto rbegin = 0;
|
|
const size_t batch_size = gmat.Size();
|
|
CHECK_LT(batch_size, offset_vec.size());
|
|
|
|
for (size_t rid = 0; rid < batch_size; ++rid) {
|
|
const size_t ibegin = gmat.row_ptr[rbegin + rid];
|
|
const size_t iend = gmat.row_ptr[rbegin + rid + 1];
|
|
const size_t size = offset_vec[rid + 1] - offset_vec[rid];
|
|
SparsePage::Inst inst = {data_ptr + offset_vec[rid], size};
|
|
|
|
CHECK_EQ(ibegin + inst.size(), iend);
|
|
size_t j = 0;
|
|
for (size_t i = ibegin; i < iend; ++i, ++j) {
|
|
const uint32_t bin_id = index[i];
|
|
auto fid = inst[j].index;
|
|
assign_bin(bin_id, rid, fid);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
inline void SetIndex(SparsePage const& page, uint32_t const* index, const GHistIndexMatrix& gmat,
|
|
const size_t nfeature) {
|
|
T* local_index = reinterpret_cast<T*>(&index_[0]);
|
|
std::vector<size_t> num_nonzeros;
|
|
num_nonzeros.resize(nfeature);
|
|
std::fill(num_nonzeros.begin(), num_nonzeros.end(), 0);
|
|
|
|
auto get_bin_idx = [&](auto bin_id, auto rid, bst_feature_t fid) {
|
|
if (type_[fid] == kDenseColumn) {
|
|
T* begin = &local_index[feature_offsets_[fid]];
|
|
begin[rid] = bin_id - index_base_[fid];
|
|
missing_flags_[feature_offsets_[fid] + rid] = false;
|
|
} else {
|
|
T* begin = &local_index[feature_offsets_[fid]];
|
|
begin[num_nonzeros[fid]] = bin_id - index_base_[fid];
|
|
row_ind_[feature_offsets_[fid] + num_nonzeros[fid]] = rid;
|
|
++num_nonzeros[fid];
|
|
}
|
|
};
|
|
this->SetIndexSparse(page, index, gmat, nfeature, get_bin_idx);
|
|
}
|
|
|
|
BinTypeSize GetTypeSize() const { return bins_type_size_; }
|
|
|
|
// This is just an utility function
|
|
bool NoMissingValues(const size_t n_elements, const size_t n_row, const size_t n_features) {
|
|
return n_elements == n_features * n_row;
|
|
}
|
|
|
|
// And this returns part of state
|
|
bool AnyMissing() const { return any_missing_; }
|
|
|
|
// IO procedures for external memory.
|
|
bool Read(dmlc::SeekStream* fi, uint32_t const* index_base) {
|
|
fi->Read(&index_);
|
|
fi->Read(&feature_counts_);
|
|
#if !DMLC_LITTLE_ENDIAN
|
|
// s390x
|
|
std::vector<std::underlying_type<ColumnType>::type> int_types;
|
|
fi->Read(&int_types);
|
|
type_.resize(int_types.size());
|
|
std::transform(
|
|
int_types.begin(), int_types.end(), type_.begin(),
|
|
[](std::underlying_type<ColumnType>::type i) { return static_cast<ColumnType>(i); });
|
|
#else
|
|
fi->Read(&type_);
|
|
#endif // !DMLC_LITTLE_ENDIAN
|
|
|
|
fi->Read(&row_ind_);
|
|
fi->Read(&feature_offsets_);
|
|
index_base_ = index_base;
|
|
#if !DMLC_LITTLE_ENDIAN
|
|
std::underlying_type<BinTypeSize>::type v;
|
|
fi->Read(&v);
|
|
bins_type_size_ = static_cast<BinTypeSize>(v);
|
|
#else
|
|
fi->Read(&bins_type_size_);
|
|
#endif
|
|
|
|
fi->Read(&any_missing_);
|
|
return true;
|
|
}
|
|
|
|
size_t Write(dmlc::Stream* fo) const {
|
|
size_t bytes{0};
|
|
|
|
auto write_vec = [&](auto const& vec) {
|
|
fo->Write(vec);
|
|
bytes += vec.size() * sizeof(typename std::remove_reference_t<decltype(vec)>::value_type) +
|
|
sizeof(uint64_t);
|
|
};
|
|
write_vec(index_);
|
|
write_vec(feature_counts_);
|
|
#if !DMLC_LITTLE_ENDIAN
|
|
// s390x
|
|
std::vector<std::underlying_type<ColumnType>::type> int_types(type_.size());
|
|
std::transform(type_.begin(), type_.end(), int_types.begin(), [](ColumnType t) {
|
|
return static_cast<std::underlying_type<ColumnType>::type>(t);
|
|
});
|
|
write_vec(int_types);
|
|
#else
|
|
write_vec(type_);
|
|
#endif // !DMLC_LITTLE_ENDIAN
|
|
write_vec(row_ind_);
|
|
write_vec(feature_offsets_);
|
|
|
|
#if !DMLC_LITTLE_ENDIAN
|
|
auto v = static_cast<std::underlying_type<BinTypeSize>::type>(bins_type_size_);
|
|
fo->Write(v);
|
|
#else
|
|
fo->Write(bins_type_size_);
|
|
#endif // DMLC_LITTLE_ENDIAN
|
|
bytes += sizeof(bins_type_size_);
|
|
fo->Write(any_missing_);
|
|
bytes += sizeof(any_missing_);
|
|
|
|
return bytes;
|
|
}
|
|
|
|
private:
|
|
std::vector<uint8_t> index_;
|
|
|
|
std::vector<size_t> feature_counts_;
|
|
std::vector<ColumnType> type_;
|
|
std::vector<size_t> row_ind_;
|
|
/* indicate where each column's index and row_ind is stored. */
|
|
std::vector<size_t> feature_offsets_;
|
|
|
|
// index_base_[fid]: least bin id for feature fid
|
|
uint32_t const* index_base_;
|
|
std::vector<bool> missing_flags_;
|
|
BinTypeSize bins_type_size_;
|
|
bool any_missing_;
|
|
};
|
|
} // namespace common
|
|
} // namespace xgboost
|
|
#endif // XGBOOST_COMMON_COLUMN_MATRIX_H_
|