koertkuipers 3c506b076e [jvm-packages] upgrade to Scala 2.12 (#4574)
* bump scala to 2.12 which requires java 8 and also newer flink and akka

* put scala version in artifactId

* fix appveyor

* fix for scaladoc issue that looks like https://github.com/scala/bug/issues/10509

* fix ci_build

* update versions in generate_pom.py

* fix generate_pom.py

* apache does not have a download for spark 2.4.3 distro using scala 2.12 yet, so for now i use a tgz i put on s3

* Upload spark-2.4.3-bin-scala2.12-hadoop2.7.tgz to our own S3

* Update Dockerfile.jvm_cross

* Update Dockerfile.jvm_cross
2019-07-16 08:43:34 -07:00
2019-05-27 13:29:28 +12:00
2018-07-10 00:42:15 -07:00
2017-12-01 02:58:13 -08:00
2019-04-08 21:20:15 -07:00

eXtreme Gradient Boosting

Build Status Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version

Community | Documentation | Resources | Contributors | Release Notes

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Contribute to XGBoost

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the Community Page

Reference

  • Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016
  • XGBoost originates from research project at University of Washington.

Sponsors

Become a sponsor and get a logo here. See details at Sponsoring the XGBoost Project. The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net).

Open Source Collective sponsors

Backers on Open Collective Sponsors on Open Collective

Sponsors

[Become a sponsor]

NVIDIA

Backers

[Become a backer]

Other sponsors

The sponsors in this list are donating cloud hours in lieu of cash donation.

Amazon Web Services

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%