150 lines
5.4 KiB
Plaintext
150 lines
5.4 KiB
Plaintext
#include <gtest/gtest.h>
|
|
|
|
#include "../../../../src/data/ellpack_page.cuh"
|
|
#include "../../../../src/tree/gpu_hist/gradient_based_sampler.cuh"
|
|
#include "../../helpers.h"
|
|
#include "dmlc/filesystem.h"
|
|
|
|
namespace xgboost {
|
|
namespace tree {
|
|
|
|
void VerifySampling(size_t page_size,
|
|
float subsample,
|
|
int sampling_method,
|
|
bool fixed_size_sampling = true,
|
|
bool check_sum = true) {
|
|
constexpr size_t kRows = 4096;
|
|
constexpr size_t kCols = 1;
|
|
size_t sample_rows = kRows * subsample;
|
|
|
|
dmlc::TemporaryDirectory tmpdir;
|
|
std::unique_ptr<DMatrix> dmat(
|
|
CreateSparsePageDMatrixWithRC(kRows, kCols, page_size, true, tmpdir));
|
|
auto gpair = GenerateRandomGradients(kRows);
|
|
GradientPair sum_gpair{};
|
|
for (const auto& gp : gpair.ConstHostVector()) {
|
|
sum_gpair += gp;
|
|
}
|
|
gpair.SetDevice(0);
|
|
|
|
BatchParam param{0, 256, 0, page_size};
|
|
auto page = (*dmat->GetBatches<EllpackPage>(param).begin()).Impl();
|
|
if (page_size != 0) {
|
|
EXPECT_NE(page->n_rows, kRows);
|
|
}
|
|
|
|
GradientBasedSampler sampler(page, kRows, param, subsample, sampling_method);
|
|
auto sample = sampler.Sample(gpair.DeviceSpan(), dmat.get());
|
|
|
|
if (fixed_size_sampling) {
|
|
EXPECT_EQ(sample.sample_rows, kRows);
|
|
EXPECT_EQ(sample.page->n_rows, kRows);
|
|
EXPECT_EQ(sample.gpair.size(), kRows);
|
|
} else {
|
|
EXPECT_NEAR(sample.sample_rows, sample_rows, kRows * 0.016);
|
|
EXPECT_NEAR(sample.page->n_rows, sample_rows, kRows * 0.016f);
|
|
EXPECT_NEAR(sample.gpair.size(), sample_rows, kRows * 0.016f);
|
|
}
|
|
|
|
GradientPair sum_sampled_gpair{};
|
|
std::vector<GradientPair> sampled_gpair_h(sample.gpair.size());
|
|
dh::CopyDeviceSpanToVector(&sampled_gpair_h, sample.gpair);
|
|
for (const auto& gp : sampled_gpair_h) {
|
|
sum_sampled_gpair += gp;
|
|
}
|
|
if (check_sum) {
|
|
EXPECT_NEAR(sum_gpair.GetGrad(), sum_sampled_gpair.GetGrad(), 0.03f * kRows);
|
|
EXPECT_NEAR(sum_gpair.GetHess(), sum_sampled_gpair.GetHess(), 0.03f * kRows);
|
|
} else {
|
|
EXPECT_NEAR(sum_gpair.GetGrad() / kRows, sum_sampled_gpair.GetGrad() / sample_rows, 0.03f);
|
|
EXPECT_NEAR(sum_gpair.GetHess() / kRows, sum_sampled_gpair.GetHess() / sample_rows, 0.03f);
|
|
}
|
|
}
|
|
|
|
TEST(GradientBasedSampler, NoSampling) {
|
|
constexpr size_t kPageSize = 0;
|
|
constexpr float kSubsample = 1.0f;
|
|
constexpr int kSamplingMethod = TrainParam::kUniform;
|
|
VerifySampling(kPageSize, kSubsample, kSamplingMethod);
|
|
}
|
|
|
|
// In external mode, when not sampling, we concatenate the pages together.
|
|
TEST(GradientBasedSampler, NoSampling_ExternalMemory) {
|
|
constexpr size_t kRows = 2048;
|
|
constexpr size_t kCols = 1;
|
|
constexpr float kSubsample = 1.0f;
|
|
constexpr size_t kPageSize = 1024;
|
|
|
|
// Create a DMatrix with multiple batches.
|
|
dmlc::TemporaryDirectory tmpdir;
|
|
std::unique_ptr<DMatrix>
|
|
dmat(CreateSparsePageDMatrixWithRC(kRows, kCols, kPageSize, true, tmpdir));
|
|
auto gpair = GenerateRandomGradients(kRows);
|
|
gpair.SetDevice(0);
|
|
|
|
BatchParam param{0, 256, 0, kPageSize};
|
|
auto page = (*dmat->GetBatches<EllpackPage>(param).begin()).Impl();
|
|
EXPECT_NE(page->n_rows, kRows);
|
|
|
|
GradientBasedSampler sampler(page, kRows, param, kSubsample, TrainParam::kUniform);
|
|
auto sample = sampler.Sample(gpair.DeviceSpan(), dmat.get());
|
|
auto sampled_page = sample.page;
|
|
EXPECT_EQ(sample.sample_rows, kRows);
|
|
EXPECT_EQ(sample.gpair.size(), gpair.Size());
|
|
EXPECT_EQ(sample.gpair.data(), gpair.DevicePointer());
|
|
EXPECT_EQ(sampled_page->n_rows, kRows);
|
|
|
|
std::vector<common::CompressedByteT> buffer(sampled_page->gidx_buffer.HostVector());
|
|
common::CompressedIterator<common::CompressedByteT>
|
|
ci(buffer.data(), sampled_page->NumSymbols());
|
|
|
|
size_t offset = 0;
|
|
for (auto& batch : dmat->GetBatches<EllpackPage>(param)) {
|
|
auto page = batch.Impl();
|
|
std::vector<common::CompressedByteT> page_buffer(page->gidx_buffer.HostVector());
|
|
common::CompressedIterator<common::CompressedByteT>
|
|
page_ci(page_buffer.data(), page->NumSymbols());
|
|
size_t num_elements = page->n_rows * page->row_stride;
|
|
for (size_t i = 0; i < num_elements; i++) {
|
|
EXPECT_EQ(ci[i + offset], page_ci[i]);
|
|
}
|
|
offset += num_elements;
|
|
}
|
|
}
|
|
|
|
TEST(GradientBasedSampler, UniformSampling) {
|
|
constexpr size_t kPageSize = 0;
|
|
constexpr float kSubsample = 0.5;
|
|
constexpr int kSamplingMethod = TrainParam::kUniform;
|
|
constexpr bool kFixedSizeSampling = true;
|
|
constexpr bool kCheckSum = false;
|
|
VerifySampling(kPageSize, kSubsample, kSamplingMethod, kFixedSizeSampling, kCheckSum);
|
|
}
|
|
|
|
TEST(GradientBasedSampler, UniformSampling_ExternalMemory) {
|
|
constexpr size_t kPageSize = 1024;
|
|
constexpr float kSubsample = 0.5;
|
|
constexpr int kSamplingMethod = TrainParam::kUniform;
|
|
constexpr bool kFixedSizeSampling = false;
|
|
constexpr bool kCheckSum = false;
|
|
VerifySampling(kPageSize, kSubsample, kSamplingMethod, kFixedSizeSampling, kCheckSum);
|
|
}
|
|
|
|
TEST(GradientBasedSampler, GradientBasedSampling) {
|
|
constexpr size_t kPageSize = 0;
|
|
constexpr float kSubsample = 0.8;
|
|
constexpr int kSamplingMethod = TrainParam::kGradientBased;
|
|
VerifySampling(kPageSize, kSubsample, kSamplingMethod);
|
|
}
|
|
|
|
TEST(GradientBasedSampler, GradientBasedSampling_ExternalMemory) {
|
|
constexpr size_t kPageSize = 1024;
|
|
constexpr float kSubsample = 0.8;
|
|
constexpr int kSamplingMethod = TrainParam::kGradientBased;
|
|
constexpr bool kFixedSizeSampling = false;
|
|
VerifySampling(kPageSize, kSubsample, kSamplingMethod, kFixedSizeSampling);
|
|
}
|
|
|
|
}; // namespace tree
|
|
}; // namespace xgboost
|