90 lines
3.2 KiB
Python
90 lines
3.2 KiB
Python
import numpy as np
|
|
import xgboost as xgb
|
|
import unittest
|
|
|
|
dpath = 'demo/data/'
|
|
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
|
|
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
|
|
|
|
rng = np.random.RandomState(1994)
|
|
|
|
class TestModels(unittest.TestCase):
|
|
|
|
def test_glm(self):
|
|
param = {'silent':1, 'objective':'binary:logistic', 'booster':'gblinear', 'alpha': 0.0001, 'lambda': 1 }
|
|
watchlist = [(dtest,'eval'), (dtrain,'train')]
|
|
num_round = 4
|
|
bst = xgb.train(param, dtrain, num_round, watchlist)
|
|
assert isinstance(bst, xgb.core.Booster)
|
|
preds = bst.predict(dtest)
|
|
labels = dtest.get_label()
|
|
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
|
|
assert err < 0.1
|
|
|
|
def test_eta_decay(self):
|
|
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
|
|
watchlist = [(dtest,'eval'), (dtrain,'train')]
|
|
num_round = 2
|
|
# learning_rates as a list
|
|
bst = xgb.train(param, dtrain, num_round, watchlist, learning_rates=[0.4, 0.3])
|
|
assert isinstance(bst, xgb.core.Booster)
|
|
|
|
# learning_rates as a customized decay function
|
|
def eta_decay(ithround, num_boost_round):
|
|
return num_boost_round / (ithround + 1)
|
|
bst = xgb.train(param, dtrain, num_round, watchlist, learning_rates=eta_decay)
|
|
assert isinstance(bst, xgb.core.Booster)
|
|
|
|
|
|
def test_custom_objective(self):
|
|
param = {'max_depth':2, 'eta':1, 'silent':1 }
|
|
watchlist = [(dtest,'eval'), (dtrain,'train')]
|
|
num_round = 2
|
|
def logregobj(preds, dtrain):
|
|
labels = dtrain.get_label()
|
|
preds = 1.0 / (1.0 + np.exp(-preds))
|
|
grad = preds - labels
|
|
hess = preds * (1.0-preds)
|
|
return grad, hess
|
|
def evalerror(preds, dtrain):
|
|
labels = dtrain.get_label()
|
|
return 'error', float(sum(labels != (preds > 0.0))) / len(labels)
|
|
|
|
# test custom_objective in training
|
|
bst = xgb.train(param, dtrain, num_round, watchlist, logregobj, evalerror)
|
|
assert isinstance(bst, xgb.core.Booster)
|
|
preds = bst.predict(dtest)
|
|
labels = dtest.get_label()
|
|
err = sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) / float(len(preds))
|
|
assert err < 0.1
|
|
|
|
# test custom_objective in cross-validation
|
|
xgb.cv(param, dtrain, num_round, nfold = 5, seed = 0,
|
|
obj = logregobj, feval=evalerror)
|
|
|
|
# test maximize parameter
|
|
def neg_evalerror(preds, dtrain):
|
|
labels = dtrain.get_label()
|
|
return 'error', float(sum(labels == (preds > 0.0))) / len(labels)
|
|
bst2 = xgb.train(param, dtrain, num_round, watchlist, logregobj, neg_evalerror, maximize=True)
|
|
preds2 = bst2.predict(dtest)
|
|
err2 = sum(1 for i in range(len(preds2)) if int(preds2[i]>0.5)!=labels[i]) / float(len(preds2))
|
|
assert err == err2
|
|
|
|
def test_fpreproc(self):
|
|
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic'}
|
|
num_round = 2
|
|
def fpreproc(dtrain, dtest, param):
|
|
label = dtrain.get_label()
|
|
ratio = float(np.sum(label == 0)) / np.sum(label==1)
|
|
param['scale_pos_weight'] = ratio
|
|
return (dtrain, dtest, param)
|
|
xgb.cv(param, dtrain, num_round, nfold=5,
|
|
metrics={'auc'}, seed = 0, fpreproc = fpreproc)
|
|
|
|
def test_show_stdv(self):
|
|
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic'}
|
|
num_round = 2
|
|
xgb.cv(param, dtrain, num_round, nfold=5,
|
|
metrics={'error'}, seed = 0, show_stdv = False)
|