177 lines
6.3 KiB
C++
Executable File
177 lines
6.3 KiB
C++
Executable File
/*!
|
|
* Copyright 2017-2019 XGBoost contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
#include <xgboost/objective.h>
|
|
#include <xgboost/context.h>
|
|
#include <xgboost/json.h>
|
|
#include "../helpers.h"
|
|
namespace xgboost {
|
|
|
|
TEST(Plugin, LinearRegressionGPairOneAPI) {
|
|
Context tparam = MakeCUDACtx(0);
|
|
std::vector<std::pair<std::string, std::string>> args;
|
|
|
|
std::unique_ptr<ObjFunction> obj {
|
|
ObjFunction::Create("reg:squarederror_oneapi", &tparam)
|
|
};
|
|
|
|
obj->Configure(args);
|
|
CheckObjFunction(obj,
|
|
{0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{0, 0, 0, 0, 1, 1, 1, 1},
|
|
{1, 1, 1, 1, 1, 1, 1, 1},
|
|
{0, 0.1f, 0.9f, 1.0f, -1.0f, -0.9f, -0.1f, 0},
|
|
{1, 1, 1, 1, 1, 1, 1, 1});
|
|
CheckObjFunction(obj,
|
|
{0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{0, 0, 0, 0, 1, 1, 1, 1},
|
|
{}, // empty weight
|
|
{0, 0.1f, 0.9f, 1.0f, -1.0f, -0.9f, -0.1f, 0},
|
|
{1, 1, 1, 1, 1, 1, 1, 1});
|
|
ASSERT_NO_THROW(obj->DefaultEvalMetric());
|
|
}
|
|
|
|
TEST(Plugin, SquaredLogOneAPI) {
|
|
Context tparam = MakeCUDACtx(0);
|
|
std::vector<std::pair<std::string, std::string>> args;
|
|
|
|
std::unique_ptr<ObjFunction> obj { ObjFunction::Create("reg:squaredlogerror_oneapi", &tparam) };
|
|
obj->Configure(args);
|
|
CheckConfigReload(obj, "reg:squaredlogerror_oneapi");
|
|
|
|
CheckObjFunction(obj,
|
|
{0.1f, 0.2f, 0.4f, 0.8f, 1.6f}, // pred
|
|
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, // labels
|
|
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, // weights
|
|
{-0.5435f, -0.4257f, -0.25475f, -0.05855f, 0.1009f},
|
|
{ 1.3205f, 1.0492f, 0.69215f, 0.34115f, 0.1091f});
|
|
CheckObjFunction(obj,
|
|
{0.1f, 0.2f, 0.4f, 0.8f, 1.6f}, // pred
|
|
{1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, // labels
|
|
{}, // empty weights
|
|
{-0.5435f, -0.4257f, -0.25475f, -0.05855f, 0.1009f},
|
|
{ 1.3205f, 1.0492f, 0.69215f, 0.34115f, 0.1091f});
|
|
ASSERT_EQ(obj->DefaultEvalMetric(), std::string{"rmsle"});
|
|
}
|
|
|
|
TEST(Plugin, LogisticRegressionGPairOneAPI) {
|
|
Context tparam = MakeCUDACtx(0);
|
|
std::vector<std::pair<std::string, std::string>> args;
|
|
std::unique_ptr<ObjFunction> obj { ObjFunction::Create("reg:logistic_oneapi", &tparam) };
|
|
|
|
obj->Configure(args);
|
|
CheckConfigReload(obj, "reg:logistic_oneapi");
|
|
|
|
CheckObjFunction(obj,
|
|
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1}, // preds
|
|
{ 0, 0, 0, 0, 1, 1, 1, 1}, // labels
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1}, // weights
|
|
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f}, // out_grad
|
|
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f}); // out_hess
|
|
}
|
|
|
|
TEST(Plugin, LogisticRegressionBasicOneAPI) {
|
|
Context lparam = MakeCUDACtx(0);
|
|
std::vector<std::pair<std::string, std::string>> args;
|
|
std::unique_ptr<ObjFunction> obj {
|
|
ObjFunction::Create("reg:logistic_oneapi", &lparam)
|
|
};
|
|
|
|
obj->Configure(args);
|
|
CheckConfigReload(obj, "reg:logistic_oneapi");
|
|
|
|
// test label validation
|
|
EXPECT_ANY_THROW(CheckObjFunction(obj, {0}, {10}, {1}, {0}, {0}))
|
|
<< "Expected error when label not in range [0,1f] for LogisticRegression";
|
|
|
|
// test ProbToMargin
|
|
EXPECT_NEAR(obj->ProbToMargin(0.1f), -2.197f, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.5f), 0, 0.01f);
|
|
EXPECT_NEAR(obj->ProbToMargin(0.9f), 2.197f, 0.01f);
|
|
EXPECT_ANY_THROW(obj->ProbToMargin(10))
|
|
<< "Expected error when base_score not in range [0,1f] for LogisticRegression";
|
|
|
|
// test PredTransform
|
|
HostDeviceVector<bst_float> io_preds = {0, 0.1f, 0.5f, 0.9f, 1};
|
|
std::vector<bst_float> out_preds = {0.5f, 0.524f, 0.622f, 0.710f, 0.731f};
|
|
obj->PredTransform(&io_preds);
|
|
auto& preds = io_preds.HostVector();
|
|
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
|
|
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
|
|
}
|
|
}
|
|
|
|
TEST(Plugin, LogisticRawGPairOneAPI) {
|
|
Context lparam = MakeCUDACtx(0);
|
|
std::vector<std::pair<std::string, std::string>> args;
|
|
std::unique_ptr<ObjFunction> obj {
|
|
ObjFunction::Create("binary:logitraw_oneapi", &lparam)
|
|
};
|
|
|
|
obj->Configure(args);
|
|
|
|
CheckObjFunction(obj,
|
|
{ 0, 0.1f, 0.9f, 1, 0, 0.1f, 0.9f, 1},
|
|
{ 0, 0, 0, 0, 1, 1, 1, 1},
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1},
|
|
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
|
|
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f});
|
|
}
|
|
|
|
TEST(Plugin, CPUvsOneAPI) {
|
|
Context ctx = MakeCUDACtx(0);
|
|
|
|
ObjFunction * obj_cpu =
|
|
ObjFunction::Create("reg:squarederror", &ctx);
|
|
ObjFunction * obj_oneapi =
|
|
ObjFunction::Create("reg:squarederror_oneapi", &ctx);
|
|
HostDeviceVector<GradientPair> cpu_out_preds;
|
|
HostDeviceVector<GradientPair> oneapi_out_preds;
|
|
|
|
constexpr size_t kRows = 400;
|
|
constexpr size_t kCols = 100;
|
|
auto pdmat = RandomDataGenerator(kRows, kCols, 0).Seed(0).GenerateDMatrix();
|
|
HostDeviceVector<float> preds;
|
|
preds.Resize(kRows);
|
|
auto& h_preds = preds.HostVector();
|
|
for (size_t i = 0; i < h_preds.size(); ++i) {
|
|
h_preds[i] = static_cast<float>(i);
|
|
}
|
|
auto& info = pdmat->Info();
|
|
|
|
info.labels.Reshape(kRows, 1);
|
|
auto& h_labels = info.labels.Data()->HostVector();
|
|
for (size_t i = 0; i < h_labels.size(); ++i) {
|
|
h_labels[i] = 1 / static_cast<float>(i+1);
|
|
}
|
|
|
|
{
|
|
// CPU
|
|
ctx.gpu_id = -1;
|
|
obj_cpu->GetGradient(preds, info, 0, &cpu_out_preds);
|
|
}
|
|
{
|
|
// oneapi
|
|
ctx.gpu_id = 0;
|
|
obj_oneapi->GetGradient(preds, info, 0, &oneapi_out_preds);
|
|
}
|
|
|
|
auto& h_cpu_out = cpu_out_preds.HostVector();
|
|
auto& h_oneapi_out = oneapi_out_preds.HostVector();
|
|
|
|
float sgrad = 0;
|
|
float shess = 0;
|
|
for (size_t i = 0; i < kRows; ++i) {
|
|
sgrad += std::pow(h_cpu_out[i].GetGrad() - h_oneapi_out[i].GetGrad(), 2);
|
|
shess += std::pow(h_cpu_out[i].GetHess() - h_oneapi_out[i].GetHess(), 2);
|
|
}
|
|
ASSERT_NEAR(sgrad, 0.0f, kRtEps);
|
|
ASSERT_NEAR(shess, 0.0f, kRtEps);
|
|
|
|
delete obj_cpu;
|
|
delete obj_oneapi;
|
|
}
|
|
|
|
} // namespace xgboost
|