xgboost/tests/python/test_basic_models.py
Jiaming Yuan 14476e8868
[backport] Fix tests with pandas 2.0. (#9014) (#9289)
* Fix tests with pandas 2.0.

- `is_categorical` is replaced by `is_categorical_dtype`.
- one hot encoding returns boolean type instead of integer type.
2023-06-11 00:52:44 +08:00

599 lines
23 KiB
Python

import numpy as np
import xgboost as xgb
import os
import json
import testing as tm
import pytest
import locale
import tempfile
dpath = os.path.join(tm.PROJECT_ROOT, 'demo/data/')
rng = np.random.RandomState(1994)
def json_model(model_path: str, parameters: dict) -> dict:
X = np.random.random((10, 3))
y = np.random.randint(2, size=(10,))
dm1 = xgb.DMatrix(X, y)
bst = xgb.train(parameters, dm1)
bst.save_model(model_path)
if model_path.endswith("ubj"):
import ubjson
with open(model_path, "rb") as ubjfd:
model = ubjson.load(ubjfd)
else:
with open(model_path, 'r') as fd:
model = json.load(fd)
return model
class TestModels:
def test_glm(self):
param = {'verbosity': 0, 'objective': 'binary:logistic',
'booster': 'gblinear', 'alpha': 0.0001, 'lambda': 1,
'nthread': 1}
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 4
bst = xgb.train(param, dtrain, num_round, watchlist)
assert isinstance(bst, xgb.core.Booster)
preds = bst.predict(dtest)
labels = dtest.get_label()
err = sum(1 for i in range(len(preds))
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
assert err < 0.2
def test_dart(self):
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
param = {'max_depth': 5, 'objective': 'binary:logistic',
'eval_metric': 'logloss', 'booster': 'dart', 'verbosity': 1}
# specify validations set to watch performance
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 2
bst = xgb.train(param, dtrain, num_round, watchlist)
# this is prediction
preds = bst.predict(dtest, ntree_limit=num_round)
labels = dtest.get_label()
err = sum(1 for i in range(len(preds))
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
# error must be smaller than 10%
assert err < 0.1
with tempfile.TemporaryDirectory() as tmpdir:
dtest_path = os.path.join(tmpdir, 'dtest.dmatrix')
model_path = os.path.join(tmpdir, 'xgboost.model.dart')
# save dmatrix into binary buffer
dtest.save_binary(dtest_path)
model_path = model_path
# save model
bst.save_model(model_path)
# load model and data in
bst2 = xgb.Booster(params=param, model_file=model_path)
dtest2 = xgb.DMatrix(dtest_path)
preds2 = bst2.predict(dtest2, ntree_limit=num_round)
# assert they are the same
assert np.sum(np.abs(preds2 - preds)) == 0
def my_logloss(preds, dtrain):
labels = dtrain.get_label()
return 'logloss', np.sum(
np.log(np.where(labels, preds, 1 - preds)))
# check whether custom evaluation metrics work
bst = xgb.train(param, dtrain, num_round, watchlist,
feval=my_logloss)
preds3 = bst.predict(dtest, ntree_limit=num_round)
assert all(preds3 == preds)
# check whether sample_type and normalize_type work
num_round = 50
param['verbosity'] = 0
param['learning_rate'] = 0.1
param['rate_drop'] = 0.1
preds_list = []
for p in [[p0, p1] for p0 in ['uniform', 'weighted']
for p1 in ['tree', 'forest']]:
param['sample_type'] = p[0]
param['normalize_type'] = p[1]
bst = xgb.train(param, dtrain, num_round, watchlist)
preds = bst.predict(dtest, ntree_limit=num_round)
err = sum(1 for i in range(len(preds))
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
assert err < 0.1
preds_list.append(preds)
for ii in range(len(preds_list)):
for jj in range(ii + 1, len(preds_list)):
assert np.sum(np.abs(preds_list[ii] - preds_list[jj])) > 0
def test_boost_from_prediction(self):
# Re-construct dtrain here to avoid modification
margined = xgb.DMatrix(dpath + 'agaricus.txt.train')
bst = xgb.train({'tree_method': 'hist'}, margined, 1)
predt_0 = bst.predict(margined, output_margin=True)
margined.set_base_margin(predt_0)
bst = xgb.train({'tree_method': 'hist'}, margined, 1)
predt_1 = bst.predict(margined)
assert np.any(np.abs(predt_1 - predt_0) > 1e-6)
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
bst = xgb.train({'tree_method': 'hist'}, dtrain, 2)
predt_2 = bst.predict(dtrain)
assert np.all(np.abs(predt_2 - predt_1) < 1e-6)
def test_boost_from_existing_model(self):
X = xgb.DMatrix(dpath + 'agaricus.txt.train')
booster = xgb.train({'tree_method': 'hist'}, X, num_boost_round=4)
assert booster.num_boosted_rounds() == 4
booster = xgb.train({'tree_method': 'hist'}, X, num_boost_round=4,
xgb_model=booster)
assert booster.num_boosted_rounds() == 8
booster = xgb.train({'updater': 'prune', 'process_type': 'update'}, X,
num_boost_round=4, xgb_model=booster)
# Trees are moved for update, the rounds is reduced. This test is
# written for being compatible with current code (1.0.0). If the
# behaviour is considered sub-optimal, feel free to change.
assert booster.num_boosted_rounds() == 4
def run_custom_objective(self, tree_method=None):
param = {
'max_depth': 2,
'eta': 1,
'objective': 'reg:logistic',
"tree_method": tree_method
}
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 10
def logregobj(preds, dtrain):
labels = dtrain.get_label()
preds = 1.0 / (1.0 + np.exp(-preds))
grad = preds - labels
hess = preds * (1.0 - preds)
return grad, hess
def evalerror(preds, dtrain):
labels = dtrain.get_label()
preds = 1.0 / (1.0 + np.exp(-preds))
return 'error', float(sum(labels != (preds > 0.5))) / len(labels)
# test custom_objective in training
bst = xgb.train(param, dtrain, num_round, watchlist, obj=logregobj,
feval=evalerror)
assert isinstance(bst, xgb.core.Booster)
preds = bst.predict(dtest)
labels = dtest.get_label()
err = sum(1 for i in range(len(preds))
if int(preds[i] > 0.5) != labels[i]) / float(len(preds))
assert err < 0.1
# test custom_objective in cross-validation
xgb.cv(param, dtrain, num_round, nfold=5, seed=0,
obj=logregobj, feval=evalerror)
# test maximize parameter
def neg_evalerror(preds, dtrain):
labels = dtrain.get_label()
return 'error', float(sum(labels == (preds > 0.0))) / len(labels)
bst2 = xgb.train(param, dtrain, num_round, watchlist, logregobj,
neg_evalerror, maximize=True)
preds2 = bst2.predict(dtest)
err2 = sum(1 for i in range(len(preds2))
if int(preds2[i] > 0.5) != labels[i]) / float(len(preds2))
assert err == err2
def test_custom_objective(self):
self.run_custom_objective()
def test_multi_eval_metric(self):
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test')
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
param = {'max_depth': 2, 'eta': 0.2, 'verbosity': 1,
'objective': 'binary:logistic'}
param['eval_metric'] = ["auc", "logloss", 'error']
evals_result = {}
bst = xgb.train(param, dtrain, 4, watchlist, evals_result=evals_result)
assert isinstance(bst, xgb.core.Booster)
assert len(evals_result['eval']) == 3
assert set(evals_result['eval'].keys()) == {'auc', 'error', 'logloss'}
def test_fpreproc(self):
param = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
'objective': 'binary:logistic'}
num_round = 2
def fpreproc(dtrain, dtest, param):
label = dtrain.get_label()
ratio = float(np.sum(label == 0)) / np.sum(label == 1)
param['scale_pos_weight'] = ratio
return (dtrain, dtest, param)
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
xgb.cv(param, dtrain, num_round, nfold=5,
metrics={'auc'}, seed=0, fpreproc=fpreproc)
def test_show_stdv(self):
param = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
'objective': 'binary:logistic'}
num_round = 2
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
xgb.cv(param, dtrain, num_round, nfold=5,
metrics={'error'}, seed=0, show_stdv=False)
def test_feature_names_validation(self):
X = np.random.random((10, 3))
y = np.random.randint(2, size=(10,))
dm1 = xgb.DMatrix(X, y, feature_names=("a", "b", "c"))
dm2 = xgb.DMatrix(X, y)
bst = xgb.train([], dm1)
bst.predict(dm1) # success
with pytest.raises(ValueError):
bst.predict(dm2)
bst.predict(dm1) # success
bst = xgb.train([], dm2)
bst.predict(dm2) # success
def test_model_binary_io(self):
model_path = 'test_model_binary_io.bin'
parameters = {'tree_method': 'hist', 'booster': 'gbtree',
'scale_pos_weight': '0.5'}
X = np.random.random((10, 3))
y = np.random.random((10,))
dtrain = xgb.DMatrix(X, y)
bst = xgb.train(parameters, dtrain, num_boost_round=2)
bst.save_model(model_path)
bst = xgb.Booster(model_file=model_path)
os.remove(model_path)
config = json.loads(bst.save_config())
assert float(config['learner']['objective'][
'reg_loss_param']['scale_pos_weight']) == 0.5
buf = bst.save_raw()
from_raw = xgb.Booster()
from_raw.load_model(buf)
buf_from_raw = from_raw.save_raw()
assert buf == buf_from_raw
def run_model_json_io(self, parameters: dict, ext: str) -> None:
if ext == "ubj" and tm.no_ubjson()["condition"]:
pytest.skip(tm.no_ubjson()["reason"])
loc = locale.getpreferredencoding(False)
model_path = 'test_model_json_io.' + ext
j_model = json_model(model_path, parameters)
assert isinstance(j_model['learner'], dict)
bst = xgb.Booster(model_file=model_path)
bst.save_model(fname=model_path)
if ext == "ubj":
import ubjson
with open(model_path, "rb") as ubjfd:
j_model = ubjson.load(ubjfd)
else:
with open(model_path, 'r') as fd:
j_model = json.load(fd)
assert isinstance(j_model['learner'], dict)
os.remove(model_path)
assert locale.getpreferredencoding(False) == loc
json_raw = bst.save_raw(raw_format="json")
from_jraw = xgb.Booster()
from_jraw.load_model(json_raw)
ubj_raw = bst.save_raw(raw_format="ubj")
from_ubjraw = xgb.Booster()
from_ubjraw.load_model(ubj_raw)
old_from_json = from_jraw.save_raw(raw_format="deprecated")
old_from_ubj = from_ubjraw.save_raw(raw_format="deprecated")
assert old_from_json == old_from_ubj
raw_json = bst.save_raw(raw_format="json")
pretty = json.dumps(json.loads(raw_json), indent=2) + "\n\n"
bst.load_model(bytearray(pretty, encoding="ascii"))
old_from_json = from_jraw.save_raw(raw_format="deprecated")
old_from_ubj = from_ubjraw.save_raw(raw_format="deprecated")
assert old_from_json == old_from_ubj
@pytest.mark.parametrize("ext", ["json", "ubj"])
def test_model_json_io(self, ext: str) -> None:
parameters = {"booster": "gbtree", "tree_method": "hist"}
self.run_model_json_io(parameters, ext)
parameters = {"booster": "gblinear"}
self.run_model_json_io(parameters, ext)
parameters = {"booster": "dart", "tree_method": "hist"}
self.run_model_json_io(parameters, ext)
@pytest.mark.skipif(**tm.no_json_schema())
def test_json_io_schema(self):
import jsonschema
model_path = 'test_json_schema.json'
path = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
doc = os.path.join(path, 'doc', 'model.schema')
with open(doc, 'r') as fd:
schema = json.load(fd)
parameters = {'tree_method': 'hist', 'booster': 'gbtree'}
jsonschema.validate(instance=json_model(model_path, parameters),
schema=schema)
os.remove(model_path)
parameters = {'tree_method': 'hist', 'booster': 'dart'}
jsonschema.validate(instance=json_model(model_path, parameters),
schema=schema)
os.remove(model_path)
try:
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train')
xgb.train({'objective': 'foo'}, dtrain, num_boost_round=1)
except ValueError as e:
e_str = str(e)
beg = e_str.find('Objective candidate')
end = e_str.find('Stack trace')
e_str = e_str[beg: end]
e_str = e_str.strip()
splited = e_str.splitlines()
objectives = [s.split(': ')[1] for s in splited]
j_objectives = schema['properties']['learner']['properties'][
'objective']['oneOf']
objectives_from_schema = set()
for j_obj in j_objectives:
objectives_from_schema.add(
j_obj['properties']['name']['const'])
objectives = set(objectives)
assert objectives == objectives_from_schema
@pytest.mark.skipif(**tm.no_json_schema())
def test_json_dump_schema(self):
import jsonschema
def validate_model(parameters):
X = np.random.random((100, 30))
y = np.random.randint(0, 4, size=(100,))
parameters['num_class'] = 4
m = xgb.DMatrix(X, y)
booster = xgb.train(parameters, m)
dump = booster.get_dump(dump_format='json')
for i in range(len(dump)):
jsonschema.validate(instance=json.loads(dump[i]),
schema=schema)
path = os.path.dirname(
os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
doc = os.path.join(path, 'doc', 'dump.schema')
with open(doc, 'r') as fd:
schema = json.load(fd)
parameters = {'tree_method': 'hist', 'booster': 'gbtree',
'objective': 'multi:softmax'}
validate_model(parameters)
parameters = {'tree_method': 'hist', 'booster': 'dart',
'objective': 'multi:softmax'}
validate_model(parameters)
def test_categorical_model_io(self):
X, y = tm.make_categorical(256, 16, 71, False)
Xy = xgb.DMatrix(X, y, enable_categorical=True)
booster = xgb.train({"tree_method": "approx"}, Xy, num_boost_round=16)
predt_0 = booster.predict(Xy)
with tempfile.TemporaryDirectory() as tempdir:
path = os.path.join(tempdir, "model.binary")
with pytest.raises(ValueError, match=r".*JSON/UBJSON.*"):
booster.save_model(path)
path = os.path.join(tempdir, "model.json")
booster.save_model(path)
booster = xgb.Booster(model_file=path)
predt_1 = booster.predict(Xy)
np.testing.assert_allclose(predt_0, predt_1)
path = os.path.join(tempdir, "model.ubj")
booster.save_model(path)
booster = xgb.Booster(model_file=path)
predt_1 = booster.predict(Xy)
np.testing.assert_allclose(predt_0, predt_1)
@pytest.mark.skipif(**tm.no_sklearn())
def test_attributes(self):
from sklearn.datasets import load_iris
X, y = load_iris(return_X_y=True)
cls = xgb.XGBClassifier(n_estimators=2)
cls.fit(X, y, early_stopping_rounds=1, eval_set=[(X, y)])
assert cls.get_booster().best_ntree_limit == 2
assert cls.best_ntree_limit == cls.get_booster().best_ntree_limit
with tempfile.TemporaryDirectory() as tmpdir:
path = os.path.join(tmpdir, "cls.json")
cls.save_model(path)
cls = xgb.XGBClassifier(n_estimators=2)
cls.load_model(path)
assert cls.get_booster().best_ntree_limit == 2
assert cls.best_ntree_limit == cls.get_booster().best_ntree_limit
def run_slice(
self,
booster: xgb.Booster,
dtrain: xgb.DMatrix,
num_parallel_tree: int,
num_classes: int,
num_boost_round: int
):
beg = 3
end = 7
sliced: xgb.Booster = booster[beg:end]
assert sliced.feature_types == booster.feature_types
sliced_trees = (end - beg) * num_parallel_tree * num_classes
assert sliced_trees == len(sliced.get_dump())
sliced_trees = sliced_trees // 2
sliced = booster[beg:end:2]
assert sliced_trees == len(sliced.get_dump())
sliced = booster[beg: ...]
sliced_trees = (num_boost_round - beg) * num_parallel_tree * num_classes
assert sliced_trees == len(sliced.get_dump())
sliced = booster[beg:]
sliced_trees = (num_boost_round - beg) * num_parallel_tree * num_classes
assert sliced_trees == len(sliced.get_dump())
sliced = booster[:end]
sliced_trees = end * num_parallel_tree * num_classes
assert sliced_trees == len(sliced.get_dump())
sliced = booster[...: end]
sliced_trees = end * num_parallel_tree * num_classes
assert sliced_trees == len(sliced.get_dump())
with pytest.raises(ValueError, match=r">= 0"):
booster[-1:0]
# we do not accept empty slice.
with pytest.raises(ValueError):
booster[1:1]
# stop can not be smaller than begin
with pytest.raises(ValueError, match=r"Invalid.*"):
booster[3:0]
with pytest.raises(ValueError, match=r"Invalid.*"):
booster[3:-1]
# negative step is not supported.
with pytest.raises(ValueError, match=r".*>= 1.*"):
booster[0:2:-1]
# step can not be 0.
with pytest.raises(ValueError, match=r".*>= 1.*"):
booster[0:2:0]
trees = [_ for _ in booster]
assert len(trees) == num_boost_round
with pytest.raises(TypeError):
booster["wrong type"]
with pytest.raises(IndexError):
booster[: num_boost_round + 1]
with pytest.raises(ValueError):
booster[1, 2] # too many dims
# setitem is not implemented as model is immutable during slicing.
with pytest.raises(TypeError):
booster[...: end] = booster
sliced_0 = booster[1:3]
np.testing.assert_allclose(
booster.predict(dtrain, iteration_range=(1, 3)), sliced_0.predict(dtrain)
)
sliced_1 = booster[3:7]
np.testing.assert_allclose(
booster.predict(dtrain, iteration_range=(3, 7)), sliced_1.predict(dtrain)
)
predt_0 = sliced_0.predict(dtrain, output_margin=True)
predt_1 = sliced_1.predict(dtrain, output_margin=True)
merged = predt_0 + predt_1 - 0.5 # base score.
single = booster[1:7].predict(dtrain, output_margin=True)
np.testing.assert_allclose(merged, single, atol=1e-6)
sliced_0 = booster[1:7:2] # 1,3,5
sliced_1 = booster[2:8:2] # 2,4,6
predt_0 = sliced_0.predict(dtrain, output_margin=True)
predt_1 = sliced_1.predict(dtrain, output_margin=True)
merged = predt_0 + predt_1 - 0.5
single = booster[1:7].predict(dtrain, output_margin=True)
np.testing.assert_allclose(merged, single, atol=1e-6)
@pytest.mark.skipif(**tm.no_sklearn())
@pytest.mark.parametrize("booster", ["gbtree", "dart"])
def test_slice(self, booster):
from sklearn.datasets import make_classification
num_classes = 3
X, y = make_classification(
n_samples=1000, n_informative=5, n_classes=num_classes
)
dtrain = xgb.DMatrix(data=X, label=y)
num_parallel_tree = 4
num_boost_round = 16
total_trees = num_parallel_tree * num_classes * num_boost_round
booster = xgb.train(
{
"num_parallel_tree": num_parallel_tree,
"subsample": 0.5,
"num_class": num_classes,
"booster": booster,
"objective": "multi:softprob",
},
num_boost_round=num_boost_round,
dtrain=dtrain,
)
booster.feature_types = ["q"] * X.shape[1]
assert len(booster.get_dump()) == total_trees
self.run_slice(booster, dtrain, num_parallel_tree, num_classes, num_boost_round)
bytesarray = booster.save_raw(raw_format="ubj")
booster = xgb.Booster(model_file=bytesarray)
self.run_slice(booster, dtrain, num_parallel_tree, num_classes, num_boost_round)
bytesarray = booster.save_raw(raw_format="deprecated")
booster = xgb.Booster(model_file=bytesarray)
self.run_slice(booster, dtrain, num_parallel_tree, num_classes, num_boost_round)
@pytest.mark.skipif(**tm.no_pandas())
def test_feature_info(self):
import pandas as pd
rows = 100
cols = 10
X = rng.randn(rows, cols)
y = rng.randn(rows)
feature_names = ["test_feature_" + str(i) for i in range(cols)]
X_pd = pd.DataFrame(X, columns=feature_names)
X_pd[f"test_feature_{3}"] = X_pd.iloc[:, 3].astype(np.int32)
Xy = xgb.DMatrix(X_pd, y)
assert Xy.feature_types[3] == "int"
booster = xgb.train({}, dtrain=Xy, num_boost_round=1)
assert booster.feature_names == Xy.feature_names
assert booster.feature_names == feature_names
assert booster.feature_types == Xy.feature_types
with tempfile.TemporaryDirectory() as tmpdir:
path = tmpdir + "model.json"
booster.save_model(path)
booster = xgb.Booster()
booster.load_model(path)
assert booster.feature_names == Xy.feature_names
assert booster.feature_types == Xy.feature_types