xgboost/plugin/updater_gpu/test/python/test_prediction.py
Rory Mitchell ef23e424f1 [GPU-Plugin] Add GPU accelerated prediction (#2593)
* [GPU-Plugin] Add GPU accelerated prediction

* Improve allocation message

* Update documentation

* Resolve linker error for predictor

* Add unit tests
2017-08-16 12:31:59 +12:00

38 lines
1.3 KiB
Python

from __future__ import print_function
#pylint: skip-file
import sys
sys.path.append("../../tests/python")
import xgboost as xgb
import testing as tm
import numpy as np
import unittest
rng = np.random.RandomState(1994)
class TestGPUPredict (unittest.TestCase):
def test_predict(self):
iterations = 1
np.random.seed(1)
test_num_rows = [10,1000,5000]
test_num_cols = [10,50,500]
for num_rows in test_num_rows:
for num_cols in test_num_cols:
dm = xgb.DMatrix(np.random.randn(num_rows, num_cols), label=[0, 1] * int(num_rows/2))
watchlist = [(dm, 'train')]
res = {}
param = {
"objective":"binary:logistic",
"predictor":"gpu_predictor",
'eval_metric': 'auc',
}
bst = xgb.train(param, dm,iterations,evals=watchlist, evals_result=res)
assert self.non_decreasing(res["train"]["auc"])
gpu_pred = bst.predict(dm, output_margin=True)
bst.set_param({"predictor":"cpu_predictor"})
cpu_pred = bst.predict(dm, output_margin=True)
np.testing.assert_allclose(cpu_pred, gpu_pred, rtol=1e-5)
def non_decreasing(self, L):
return all((x - y) < 0.001 for x, y in zip(L, L[1:]))