xgboost/booster/tree/xgboost_tree.hpp
2014-03-01 14:00:09 -08:00

177 lines
7.0 KiB
C++

#ifndef _XGBOOST_TREE_HPP_
#define _XGBOOST_TREE_HPP_
/*!
* \file xgboost_tree.hpp
* \brief implementation of regression tree
* \author Tianqi Chen: tianqi.tchen@gmail.com
*/
#include "xgboost_tree_model.h"
namespace xgboost{
namespace booster{
const bool rt_debug = false;
// whether to check bugs
const bool check_bug = false;
const float rt_eps = 1e-5f;
const float rt_2eps = rt_eps * 2.0f;
inline double sqr( double a ){
return a * a;
}
};
};
#include "xgboost_svdf_tree.hpp"
#include "xgboost_col_treemaker.hpp"
namespace xgboost{
namespace booster{
// regression tree, construction algorithm is seperated from this class
// see RegTreeUpdater
class RegTreeTrainer : public IBooster{
public:
RegTreeTrainer( void ){
silent = 0; tree_maker = 0;
}
virtual ~RegTreeTrainer( void ){}
public:
virtual void SetParam( const char *name, const char *val ){
if( !strcmp( name, "silent") ) silent = atoi( val );
param.SetParam( name, val );
tree.param.SetParam( name, val );
}
virtual void LoadModel( utils::IStream &fi ){
tree.LoadModel( fi );
}
virtual void SaveModel( utils::IStream &fo ) const{
tree.SaveModel( fo );
}
virtual void InitModel( void ){
tree.InitModel();
}
public:
virtual void DoBoost( std::vector<float> &grad,
std::vector<float> &hess,
const FMatrixS &smat,
const std::vector<unsigned> &root_index ){
this->DoBoost_( grad, hess, smat, root_index );
}
virtual int GetLeafIndex( const std::vector<float> &feat,
const std::vector<bool> &funknown,
unsigned gid = 0 ){
// start from groups that belongs to current data
int pid = (int)gid;
// tranverse tree
while( !tree[ pid ].is_leaf() ){
unsigned split_index = tree[ pid ].split_index();
pid = this->GetNext( pid, feat[ split_index ], funknown[ split_index ] );
}
return pid;
}
virtual void PredPath( std::vector<int> &path, const FMatrixS::Line &feat, unsigned gid = 0 ){
path.clear();
this->InitTmp();
this->PrepareTmp( feat );
int pid = (int)gid;
path.push_back( pid );
// tranverse tree
while( !tree[ pid ].is_leaf() ){
unsigned split_index = tree[ pid ].split_index();
pid = this->GetNext( pid, tmp_feat[ split_index ], tmp_funknown[ split_index ] );
path.push_back( pid );
}
this->DropTmp( feat );
}
virtual float Predict( const FMatrixS::Line &feat, unsigned gid = 0 ){
this->InitTmp();
this->PrepareTmp( feat );
int pid = this->GetLeafIndex( tmp_feat, tmp_funknown, gid );
this->DropTmp( feat );
return tree[ pid ].leaf_value();
}
virtual float Predict( const std::vector<float> &feat,
const std::vector<bool> &funknown,
unsigned gid = 0 ){
utils::Assert( feat.size() >= (size_t)tree.param.num_feature,
"input data smaller than num feature" );
int pid = this->GetLeafIndex( feat, funknown, gid );
return tree[ pid ].leaf_value();
}
virtual void DumpModel( FILE *fo ){
tree.DumpModel( fo );
}
private:
template<typename FMatrix>
inline void DoBoost_( std::vector<float> &grad,
std::vector<float> &hess,
const FMatrix &smat,
const std::vector<unsigned> &root_index ){
utils::Assert( grad.size() < UINT_MAX, "number of instance exceed what we can handle" );
if( !silent ){
printf( "\nbuild GBRT with %u instances\n", (unsigned)grad.size() );
}
int num_pruned;
if( tree_maker == 0 ){
// start with a id set
RTreeUpdater<FMatrix> updater( param, tree, grad, hess, smat, root_index );
tree.param.max_depth = updater.do_boost( num_pruned );
}else{
ColTreeMaker<FMatrix> maker( tree, param, grad, hess, smat, root_index );
maker.Make( tree.param.max_depth, num_pruned );
}
if( !silent ){
printf( "tree train end, %d roots, %d extra nodes, %d pruned nodes ,max_depth=%d\n",
tree.param.num_roots, tree.num_extra_nodes(), num_pruned, tree.param.max_depth );
}
}
private:
int silent;
int tree_maker;
RegTree tree;
TreeParamTrain param;
private:
std::vector<float> tmp_feat;
std::vector<bool> tmp_funknown;
inline void InitTmp( void ){
if( tmp_feat.size() != (size_t)tree.param.num_feature ){
tmp_feat.resize( tree.param.num_feature );
tmp_funknown.resize( tree.param.num_feature );
std::fill( tmp_funknown.begin(), tmp_funknown.end(), true );
}
}
inline void PrepareTmp( const FMatrixS::Line &feat ){
for( unsigned i = 0; i < feat.len; i ++ ){
utils::Assert( feat[i].findex < (unsigned)tmp_funknown.size() , "input feature execeed bound" );
tmp_funknown[ feat[i].findex ] = false;
tmp_feat[ feat[i].findex ] = feat[i].fvalue;
}
}
inline void DropTmp( const FMatrixS::Line &feat ){
for( unsigned i = 0; i < feat.len; i ++ ){
tmp_funknown[ feat[i].findex ] = true;
}
}
inline int GetNext( int pid, float fvalue, bool is_unknown ){
float split_value = tree[ pid ].split_cond();
if( is_unknown ){
if( tree[ pid ].default_left() ) return tree[ pid ].cleft();
else return tree[ pid ].cright();
}else{
if( fvalue < split_value ) return tree[ pid ].cleft();
else return tree[ pid ].cright();
}
}
};
};
};
#endif