2024-03-01 14:15:31 +08:00

1011 lines
32 KiB
C++

/**
* Copyright 2021-2023 by XGBoost Contributors
* \file linalg.h
* \brief Linear algebra related utilities.
*/
#ifndef XGBOOST_LINALG_H_
#define XGBOOST_LINALG_H_
#include <dmlc/endian.h>
#include <xgboost/base.h>
#include <xgboost/context.h>
#include <xgboost/host_device_vector.h>
#include <xgboost/json.h>
#include <xgboost/span.h>
#include <algorithm>
#include <cassert>
#include <cinttypes> // for int32_t
#include <cstddef> // for size_t
#include <limits>
#include <string>
#include <tuple> // for make_tuple
#include <type_traits>
#include <utility>
#include <vector>
#if defined(_MSC_VER)
#include <intrin.h>
#endif // defined(_MSC_VER)
// decouple it from xgboost.
#ifndef LINALG_HD
#if defined(__CUDA__) || defined(__NVCC__)
#define LINALG_HD __host__ __device__
#else
#define LINALG_HD
#endif // defined (__CUDA__) || defined(__NVCC__)
#endif // LINALG_HD
namespace xgboost::linalg {
namespace detail {
struct ArrayInterfaceHandler {
template <typename T>
static constexpr char TypeChar() {
return (std::is_floating_point<T>::value
? 'f'
: (std::is_integral<T>::value ? (std::is_signed<T>::value ? 'i' : 'u') : '\0'));
}
};
template <size_t dim, typename S, typename Head, size_t D>
constexpr size_t Offset(S (&strides)[D], size_t n, Head head) {
static_assert(dim < D);
return n + head * strides[dim];
}
template <size_t dim, typename S, size_t D, typename Head, typename... Tail>
constexpr std::enable_if_t<sizeof...(Tail) != 0, size_t> Offset(S (&strides)[D], size_t n,
Head head, Tail &&...rest) {
static_assert(dim < D);
return Offset<dim + 1>(strides, n + (head * strides[dim]), std::forward<Tail>(rest)...);
}
template <int32_t D, bool f_array = false>
constexpr void CalcStride(size_t const (&shape)[D], size_t (&stride)[D]) {
if (f_array) {
stride[0] = 1;
for (int32_t s = 1; s < D; ++s) {
stride[s] = shape[s - 1] * stride[s - 1];
}
} else {
stride[D - 1] = 1;
for (int32_t s = D - 2; s >= 0; --s) {
stride[s] = shape[s + 1] * stride[s + 1];
}
}
}
struct AllTag {};
struct IntTag {};
template <typename I>
struct RangeTag {
I beg;
I end;
[[nodiscard]] constexpr size_t Size() const { return end - beg; }
};
/**
* \brief Calculate the dimension of sliced tensor.
*/
template <typename T>
constexpr int32_t CalcSliceDim() {
return std::is_same<T, IntTag>::value ? 0 : 1;
}
template <typename T, typename... S>
constexpr std::enable_if_t<sizeof...(S) != 0, int32_t> CalcSliceDim() {
return CalcSliceDim<T>() + CalcSliceDim<S...>();
}
template <int32_t D>
constexpr size_t CalcSize(size_t (&shape)[D]) {
size_t size = 1;
for (auto d : shape) {
size *= d;
}
return size;
}
template <typename S>
using RemoveCRType = std::remove_const_t<std::remove_reference_t<S>>;
template <typename S>
using IndexToTag = std::conditional_t<std::is_integral<RemoveCRType<S>>::value, IntTag, S>;
template <int32_t n, typename Fn>
LINALG_HD constexpr auto UnrollLoop(Fn fn) {
#if defined __CUDA_ARCH__
#pragma unroll n
#endif // defined __CUDA_ARCH__
for (int32_t i = 0; i < n; ++i) {
fn(i);
}
}
template <typename T>
int32_t NativePopc(T v) {
int c = 0;
for (; v != 0; v &= v - 1) c++;
return c;
}
inline LINALG_HD int Popc(uint32_t v) {
#if defined(__CUDA_ARCH__)
return __popc(v);
#elif defined(__GNUC__) || defined(__clang__)
return __builtin_popcount(v);
#elif defined(_MSC_VER)
return __popcnt(v);
#else
return NativePopc(v);
#endif // compiler
}
inline LINALG_HD int Popc(uint64_t v) {
#if defined(__CUDA_ARCH__)
return __popcll(v);
#elif defined(__GNUC__) || defined(__clang__)
return __builtin_popcountll(v);
#elif defined(_MSC_VER) && defined(_M_X64)
return __popcnt64(v);
#else
return NativePopc(v);
#endif // compiler
}
template <std::size_t D, typename Head>
LINALG_HD void IndexToArr(std::size_t (&arr)[D], Head head) {
static_assert(std::is_integral<std::remove_reference_t<Head>>::value, "Invalid index type.");
arr[D - 1] = head;
}
/**
* \brief Convert index from parameter pack to C-style array.
*/
template <std::size_t D, typename Head, typename... Rest>
LINALG_HD void IndexToArr(std::size_t (&arr)[D], Head head, Rest &&...index) {
static_assert(sizeof...(Rest) < D, "Index overflow.");
static_assert(std::is_integral<std::remove_reference_t<Head>>::value, "Invalid index type.");
arr[D - sizeof...(Rest) - 1] = head;
IndexToArr(arr, std::forward<Rest>(index)...);
}
template <class T, std::size_t N, std::size_t... Idx>
constexpr auto ArrToTuple(T (&arr)[N], std::index_sequence<Idx...>) {
return std::make_tuple(arr[Idx]...);
}
/**
* \brief Convert C-styple array to std::tuple.
*/
template <class T, std::size_t N>
constexpr auto ArrToTuple(T (&arr)[N]) {
return ArrToTuple(arr, std::make_index_sequence<N>{});
}
// uint division optimization inspired by the CIndexer in cupy. Division operation is
// slow on both CPU and GPU, especially 64 bit integer. So here we first try to avoid 64
// bit when the index is smaller, then try to avoid division when it's exp of 2.
template <typename I, int32_t D>
LINALG_HD auto UnravelImpl(I idx, common::Span<size_t const, D> shape) {
size_t index[D]{0};
static_assert(std::is_signed<decltype(D)>::value,
"Don't change the type without changing the for loop.");
for (int32_t dim = D; --dim > 0;) {
auto s = static_cast<std::remove_const_t<std::remove_reference_t<I>>>(shape[dim]);
if (s & (s - 1)) {
auto t = idx / s;
index[dim] = idx - t * s;
idx = t;
} else { // exp of 2
index[dim] = idx & (s - 1);
idx >>= Popc(s - 1);
}
}
index[0] = idx;
return ArrToTuple(index);
}
template <size_t dim, typename I, int32_t D>
void ReshapeImpl(size_t (&out_shape)[D], I s) {
static_assert(dim < D);
out_shape[dim] = s;
}
template <size_t dim, int32_t D, typename... S, typename I,
std::enable_if_t<sizeof...(S) != 0> * = nullptr>
void ReshapeImpl(size_t (&out_shape)[D], I &&s, S &&...rest) {
static_assert(dim < D);
out_shape[dim] = s;
ReshapeImpl<dim + 1>(out_shape, std::forward<S>(rest)...);
}
template <typename Fn, typename Tup, size_t... I>
LINALG_HD decltype(auto) constexpr Apply(Fn &&f, Tup &&t, std::index_sequence<I...>) {
return f(std::get<I>(t)...);
}
/**
* C++ 17 style apply.
*
* \param f function to apply
* \param t tuple of arguments
*/
template <typename Fn, typename Tup>
LINALG_HD decltype(auto) constexpr Apply(Fn &&f, Tup &&t) {
constexpr auto kSize = std::tuple_size<Tup>::value;
return Apply(std::forward<Fn>(f), std::forward<Tup>(t), std::make_index_sequence<kSize>{});
}
/**
* C++ 17 conjunction
*/
template <class...>
struct Conjunction : std::true_type {};
template <class B1>
struct Conjunction<B1> : B1 {};
template <class B1, class... Bn>
struct Conjunction<B1, Bn...>
: std::conditional_t<static_cast<bool>(B1::value), Conjunction<Bn...>, B1> {};
template <typename... Index>
using IsAllIntegral = Conjunction<std::is_integral<std::remove_reference_t<Index>>...>;
template <typename... Index>
using EnableIfIntegral = std::enable_if_t<IsAllIntegral<Index...>::value>;
} // namespace detail
/**
* \brief Specify all elements in the axis for slicing.
*/
constexpr detail::AllTag All() { return {}; }
/**
* \brief Specify a range of elements in the axis for slicing.
*/
template <typename I>
constexpr detail::RangeTag<I> Range(I beg, I end) {
return {beg, end};
}
enum Order : std::uint8_t {
kC, // Row major
kF, // Col major
};
/**
* \brief A tensor view with static type and dimension. It implements indexing and slicing.
*
* Most of the algorithms in XGBoost are implemented for both CPU and GPU without using
* much linear algebra routines, this class is a helper intended to ease some high level
* operations like indexing into prediction tensor or gradient matrix. It can be passed
* into CUDA kernel as normal argument for GPU algorithms.
*
* Ideally we should add a template parameter `bool on_host` so that the compiler can
* prevent passing/accessing the wrong view, but inheritance is heavily used in XGBoost so
* some functions expect data types that can be used in everywhere (update prediction
* cache for example).
*/
template <typename T, int32_t kDim>
class TensorView {
public:
using ShapeT = std::size_t[kDim];
using StrideT = ShapeT;
using element_type = T; // NOLINT
using value_type = std::remove_cv_t<T>; // NOLINT
private:
StrideT stride_{1};
ShapeT shape_{0};
common::Span<T> data_;
T *ptr_{nullptr}; // pointer of data_ to avoid bound check.
size_t size_{0};
DeviceOrd device_;
// Unlike `Tensor`, the data_ can have arbitrary size since this is just a view.
LINALG_HD void CalcSize() {
if (data_.empty()) {
size_ = 0;
} else {
size_ = detail::CalcSize(shape_);
}
}
template <size_t old_dim, size_t new_dim, int32_t D, typename I>
LINALG_HD size_t MakeSliceDim(std::size_t new_shape[D], std::size_t new_stride[D],
detail::RangeTag<I> &&range) const {
static_assert(new_dim < D);
static_assert(old_dim < kDim);
new_stride[new_dim] = stride_[old_dim];
new_shape[new_dim] = range.Size();
assert(static_cast<decltype(shape_[old_dim])>(range.end) <= shape_[old_dim]);
auto offset = stride_[old_dim] * range.beg;
return offset;
}
/**
* \brief Slice dimension for Range tag.
*/
template <size_t old_dim, size_t new_dim, int32_t D, typename I, typename... S>
LINALG_HD size_t MakeSliceDim(size_t new_shape[D], size_t new_stride[D],
detail::RangeTag<I> &&range, S &&...slices) const {
static_assert(new_dim < D);
static_assert(old_dim < kDim);
new_stride[new_dim] = stride_[old_dim];
new_shape[new_dim] = range.Size();
assert(static_cast<decltype(shape_[old_dim])>(range.end) <= shape_[old_dim]);
auto offset = stride_[old_dim] * range.beg;
return MakeSliceDim<old_dim + 1, new_dim + 1, D>(new_shape, new_stride,
std::forward<S>(slices)...) +
offset;
}
template <size_t old_dim, size_t new_dim, int32_t D>
LINALG_HD size_t MakeSliceDim(size_t new_shape[D], size_t new_stride[D], detail::AllTag) const {
static_assert(new_dim < D);
static_assert(old_dim < kDim);
new_stride[new_dim] = stride_[old_dim];
new_shape[new_dim] = shape_[old_dim];
return 0;
}
/**
* \brief Slice dimension for All tag.
*/
template <size_t old_dim, size_t new_dim, int32_t D, typename... S>
LINALG_HD size_t MakeSliceDim(size_t new_shape[D], size_t new_stride[D], detail::AllTag,
S &&...slices) const {
static_assert(new_dim < D);
static_assert(old_dim < kDim);
new_stride[new_dim] = stride_[old_dim];
new_shape[new_dim] = shape_[old_dim];
return MakeSliceDim<old_dim + 1, new_dim + 1, D>(new_shape, new_stride,
std::forward<S>(slices)...);
}
template <size_t old_dim, size_t new_dim, int32_t D, typename Index>
LINALG_HD size_t MakeSliceDim(DMLC_ATTRIBUTE_UNUSED size_t new_shape[D],
DMLC_ATTRIBUTE_UNUSED size_t new_stride[D], Index i) const {
static_assert(old_dim < kDim);
return stride_[old_dim] * i;
}
/**
* \brief Slice dimension for Index tag.
*/
template <size_t old_dim, size_t new_dim, int32_t D, typename Index, typename... S>
LINALG_HD std::enable_if_t<std::is_integral<Index>::value, size_t> MakeSliceDim(
size_t new_shape[D], size_t new_stride[D], Index i, S &&...slices) const {
static_assert(old_dim < kDim);
auto offset = stride_[old_dim] * i;
auto res =
MakeSliceDim<old_dim + 1, new_dim, D>(new_shape, new_stride, std::forward<S>(slices)...);
return res + offset;
}
public:
size_t constexpr static kValueSize = sizeof(T);
size_t constexpr static kDimension = kDim;
public:
/**
* \brief Create a tensor with data and shape.
*
* \tparam I Type of the shape array element.
* \tparam D Size of the shape array, can be lesser than or equal to tensor dimension.
*
* \param data Raw data input, can be const if this tensor has const type in its
* template parameter.
* \param shape shape of the tensor
* \param device Device ordinal
*/
template <typename I, std::int32_t D>
LINALG_HD TensorView(common::Span<T> data, I const (&shape)[D], DeviceOrd device)
: TensorView{data, shape, device, Order::kC} {}
template <typename I, int32_t D>
LINALG_HD TensorView(common::Span<T> data, I const (&shape)[D], DeviceOrd device, Order order)
: data_{data}, ptr_{data_.data()}, device_{device} {
static_assert(D > 0 && D <= kDim, "Invalid shape.");
// shape
detail::UnrollLoop<D>([&](auto i) { shape_[i] = shape[i]; });
for (auto i = D; i < kDim; ++i) {
shape_[i] = 1;
}
// stride
switch (order) {
case Order::kC: {
detail::CalcStride(shape_, stride_);
break;
}
case Order::kF: {
detail::CalcStride<kDim, true>(shape_, stride_);
break;
}
default: {
SPAN_CHECK(false);
}
}
// size
this->CalcSize();
}
/**
* \brief Create a tensor with data, shape and strides. Don't use this constructor if
* stride can be calculated from shape.
*/
template <typename I, std::int32_t D>
LINALG_HD TensorView(common::Span<T> data, I const (&shape)[D], I const (&stride)[D],
DeviceOrd device)
: data_{data}, ptr_{data_.data()}, device_{device} {
static_assert(D == kDim, "Invalid shape & stride.");
detail::UnrollLoop<D>([&](auto i) {
shape_[i] = shape[i];
stride_[i] = stride[i];
});
this->CalcSize();
}
template <
typename U,
std::enable_if_t<common::detail::IsAllowedElementTypeConversion<U, T>::value> * = nullptr>
LINALG_HD TensorView(TensorView<U, kDim> const &that) // NOLINT
: data_{that.Values()}, ptr_{data_.data()}, size_{that.Size()}, device_{that.Device()} {
detail::UnrollLoop<kDim>([&](auto i) {
stride_[i] = that.Stride(i);
shape_[i] = that.Shape(i);
});
}
/**
* \brief Index the tensor to obtain a scalar value.
*
* \code
*
* // Create a 3-dim tensor.
* Tensor<float, 3> t {data, shape, 0};
* float pi = 3.14159;
* t(1, 2, 3) = pi;
* ASSERT_EQ(t(1, 2, 3), pi);
*
* \endcode
*/
template <typename... Index, detail::EnableIfIntegral<Index...> * = nullptr>
LINALG_HD T &operator()(Index &&...index) {
static_assert(sizeof...(index) <= kDim, "Invalid index.");
size_t offset = detail::Offset<0ul>(stride_, 0ul, std::forward<Index>(index)...);
assert(offset < data_.size() && "Out of bound access.");
return ptr_[offset];
}
/**
* \brief Index the tensor to obtain a scalar value.
*/
template <typename... Index, detail::EnableIfIntegral<Index...> * = nullptr>
LINALG_HD T const &operator()(Index &&...index) const {
static_assert(sizeof...(index) <= kDim, "Invalid index.");
size_t offset = detail::Offset<0ul>(stride_, 0ul, std::forward<Index>(index)...);
assert(offset < data_.size() && "Out of bound access.");
return ptr_[offset];
}
/**
* \brief Slice the tensor. The returned tensor has inferred dim and shape. Scalar
* result is not supported.
*
* \code
*
* // Create a 3-dim tensor.
* Tensor<float, 3> t {data, shape, 0};
* // s has 2 dimensions (matrix)
* auto s = t.Slice(1, All(), All());
*
* \endcode
*/
template <typename... S>
LINALG_HD auto Slice(S &&...slices) const {
static_assert(sizeof...(slices) <= kDim, "Invalid slice.");
int32_t constexpr kNewDim{detail::CalcSliceDim<detail::IndexToTag<S>...>()};
size_t new_shape[kNewDim];
size_t new_stride[kNewDim];
auto offset = MakeSliceDim<0, 0, kNewDim>(new_shape, new_stride, std::forward<S>(slices)...);
// ret is a different type due to changed dimension, so we can not access its private
// fields.
TensorView<T, kNewDim> ret{data_.subspan(data_.empty() ? 0 : offset), new_shape, new_stride,
device_};
return ret;
}
LINALG_HD auto Shape() const { return common::Span<size_t const, kDim>{shape_}; }
/**
* Get the shape for i^th dimension
*/
LINALG_HD auto Shape(size_t i) const { return shape_[i]; }
LINALG_HD auto Stride() const { return common::Span<size_t const, kDim>{stride_}; }
/**
* Get the stride for i^th dimension, stride is specified as number of items instead of bytes.
*/
LINALG_HD auto Stride(size_t i) const { return stride_[i]; }
/**
* @brief Number of items in the tensor.
*/
[[nodiscard]] LINALG_HD std::size_t Size() const { return size_; }
[[nodiscard]] bool Empty() const { return Size() == 0; }
/**
* \brief Whether this is a contiguous array, both C and F contiguous returns true.
*/
[[nodiscard]] LINALG_HD bool Contiguous() const {
return data_.size() == this->Size() || this->CContiguous() || this->FContiguous();
}
/**
* \brief Whether it's a c-contiguous array.
*/
[[nodiscard]] LINALG_HD bool CContiguous() const {
StrideT stride;
static_assert(std::is_same<decltype(stride), decltype(stride_)>::value);
// It's contiguous if the stride can be calculated from shape.
detail::CalcStride(shape_, stride);
return common::Span<size_t const, kDim>{stride_} == common::Span<size_t const, kDim>{stride};
}
/**
* \brief Whether it's a f-contiguous array.
*/
[[nodiscard]] LINALG_HD bool FContiguous() const {
StrideT stride;
static_assert(std::is_same<decltype(stride), decltype(stride_)>::value);
// It's contiguous if the stride can be calculated from shape.
detail::CalcStride<kDim, true>(shape_, stride);
return common::Span<size_t const, kDim>{stride_} == common::Span<size_t const, kDim>{stride};
}
/**
* \brief Obtain a reference to the raw data.
*/
LINALG_HD auto Values() const -> decltype(data_) const & { return data_; }
/**
* \brief Obtain the CUDA device ordinal.
*/
LINALG_HD auto Device() const { return device_; }
};
/**
* \brief Constructor for automatic type deduction.
*/
template <typename Container, typename... S,
std::enable_if_t<!common::detail::IsSpan<Container>::value &&
!std::is_pointer_v<Container>> * = nullptr>
auto MakeTensorView(Context const *ctx, Container &data, S &&...shape) { // NOLINT
using T = std::conditional_t<std::is_const_v<Container>,
std::add_const_t<typename Container::value_type>,
typename Container::value_type>;
std::size_t in_shape[sizeof...(S)];
detail::IndexToArr(in_shape, std::forward<S>(shape)...);
return TensorView<T, sizeof...(S)>{data, in_shape, ctx->Device()};
}
template <typename T, decltype(common::dynamic_extent) ext, typename... S>
LINALG_HD auto MakeTensorView(DeviceOrd device, common::Span<T, ext> data, S &&...shape) {
std::size_t in_shape[sizeof...(S)];
detail::IndexToArr(in_shape, std::forward<S>(shape)...);
return TensorView<T, sizeof...(S)>{data, in_shape, device};
}
template <typename T, decltype(common::dynamic_extent) ext, typename... S>
auto MakeTensorView(Context const *ctx, common::Span<T, ext> data, S &&...shape) {
return MakeTensorView(ctx->Device(), data, std::forward<S>(shape)...);
}
template <typename T, decltype(common::dynamic_extent) ext, typename... S>
auto MakeTensorView(Context const *ctx, Order order, common::Span<T, ext> data, S &&...shape) {
std::size_t in_shape[sizeof...(S)];
detail::IndexToArr(in_shape, std::forward<S>(shape)...);
return TensorView<T, sizeof...(S)>{data, in_shape, ctx->Device(), order};
}
template <typename T, typename... S>
auto MakeTensorView(Context const *ctx, HostDeviceVector<T> *data, S &&...shape) {
auto span = ctx->IsCUDA() ? data->DeviceSpan() : data->HostSpan();
return MakeTensorView(ctx->Device(), span, std::forward<S>(shape)...);
}
template <typename T, typename... S>
auto MakeTensorView(Context const *ctx, HostDeviceVector<T> const *data, S &&...shape) {
auto span = ctx->IsCUDA() ? data->ConstDeviceSpan() : data->ConstHostSpan();
return MakeTensorView(ctx->Device(), span, std::forward<S>(shape)...);
}
/**
* \brief Turns linear index into multi-dimension index. Similar to numpy unravel.
*/
template <size_t D>
LINALG_HD auto UnravelIndex(size_t idx, common::Span<size_t const, D> shape) {
if (idx > std::numeric_limits<uint32_t>::max()) {
return detail::UnravelImpl<uint64_t, D>(static_cast<uint64_t>(idx), shape);
} else {
return detail::UnravelImpl<uint32_t, D>(static_cast<uint32_t>(idx), shape);
}
}
template <size_t D>
LINALG_HD auto UnravelIndex(size_t idx, std::size_t const (&shape)[D]) {
return UnravelIndex(idx, common::Span<std::size_t const, D>(shape));
}
template <typename... S>
LINALG_HD auto UnravelIndex(std::size_t idx, S... shape) {
std::size_t s[sizeof...(S)];
detail::IndexToArr(s, shape...);
return UnravelIndex(idx, common::Span<std::size_t const, sizeof...(S)>(s));
}
/**
* \brief A view over a vector, specialization of Tensor
*
* \tparam T data type of vector
*/
template <typename T>
using VectorView = TensorView<T, 1>;
/**
* \brief Create a vector view from contigious memory.
*
* \param ptr Pointer to the contigious memory.
* \param s Size of the vector.
* \param device (optional) Device ordinal, default to be host.
*/
template <typename T>
auto MakeVec(T *ptr, size_t s, DeviceOrd device = DeviceOrd::CPU()) {
return linalg::TensorView<T, 1>{{ptr, s}, {s}, device};
}
template <typename T>
auto MakeVec(HostDeviceVector<T> *data) {
return MakeVec(data->Device().IsCPU() ? data->HostPointer() : data->DevicePointer(), data->Size(),
data->Device());
}
template <typename T>
auto MakeVec(HostDeviceVector<T> const *data) {
return MakeVec(data->Device().IsCPU() ? data->ConstHostPointer() : data->ConstDevicePointer(),
data->Size(), data->Device());
}
/**
* \brief A view over a matrix, specialization of Tensor.
*
* \tparam T data type of matrix
*/
template <typename T>
using MatrixView = TensorView<T, 2>;
/**
* \brief Array Interface defined by
* <a href="https://numpy.org/doc/stable/reference/arrays.interface.html">numpy</a>.
*
* `stream` is optionally included when data is on CUDA device.
*/
template <typename T, std::int32_t D>
Json ArrayInterface(TensorView<T const, D> const &t) {
Json array_interface{Object{}};
array_interface["data"] = std::vector<Json>(2);
array_interface["data"][0] = Integer{reinterpret_cast<int64_t>(t.Values().data())};
array_interface["data"][1] = Boolean{true};
if (t.Device().IsCUDA()) {
// Change this once we have different CUDA stream.
array_interface["stream"] = Integer{2};
}
std::vector<Json> shape(t.Shape().size());
std::vector<Json> stride(t.Stride().size());
for (size_t i = 0; i < t.Shape().size(); ++i) {
shape[i] = Integer(t.Shape(i));
stride[i] = Integer(t.Stride(i) * sizeof(T));
}
array_interface["shape"] = Array{shape};
array_interface["strides"] = Array{stride};
array_interface["version"] = 3;
char constexpr kT = detail::ArrayInterfaceHandler::TypeChar<T>();
static_assert(kT != '\0');
if (DMLC_LITTLE_ENDIAN) {
array_interface["typestr"] = String{"<" + (kT + std::to_string(sizeof(T)))};
} else {
array_interface["typestr"] = String{">" + (kT + std::to_string(sizeof(T)))};
}
return array_interface;
}
/**
* \brief Same as const version, but returns non-readonly data pointer.
*/
template <typename T, int32_t D>
Json ArrayInterface(TensorView<T, D> const &t) {
TensorView<T const, D> const &as_const = t;
auto res = ArrayInterface(as_const);
res["data"][1] = Boolean{false};
return res;
}
/**
* \brief Return string representation of array interface.
*/
template <typename T, int32_t D>
auto ArrayInterfaceStr(TensorView<T const, D> const &t) {
std::string str;
Json::Dump(ArrayInterface(t), &str);
return str;
}
template <typename T, int32_t D>
auto ArrayInterfaceStr(TensorView<T, D> const &t) {
std::string str;
Json::Dump(ArrayInterface(t), &str);
return str;
}
/**
* \brief A tensor storage. To use it for other functionality like slicing one needs to
* obtain a view first. This way we can use it on both host and device.
*/
template <typename T, int32_t kDim = 5>
class Tensor {
public:
using ShapeT = std::size_t[kDim];
using StrideT = ShapeT;
private:
HostDeviceVector<T> data_;
ShapeT shape_{0};
Order order_{Order::kC};
template <typename I, std::int32_t D>
void Initialize(I const (&shape)[D], DeviceOrd device) {
static_assert(D <= kDim, "Invalid shape.");
std::copy(shape, shape + D, shape_);
for (auto i = D; i < kDim; ++i) {
shape_[i] = 1;
}
if (device.IsCUDA()) {
data_.SetDevice(device);
data_.ConstDevicePointer(); // Pull to device;
}
CHECK_EQ(data_.Size(), detail::CalcSize(shape_));
}
public:
Tensor() = default;
/**
* \brief Create a tensor with shape and device ordinal. The storage is initialized
* automatically.
*
* See \ref TensorView for parameters of this constructor.
*/
template <typename I, int32_t D>
explicit Tensor(I const (&shape)[D], DeviceOrd device, Order order = kC)
: Tensor{common::Span<I const, D>{shape}, device, order} {}
template <typename I, size_t D>
explicit Tensor(common::Span<I const, D> shape, DeviceOrd device, Order order = kC)
: order_{order} {
// No device unroll as this is a host only function.
std::copy(shape.data(), shape.data() + D, shape_);
for (auto i = D; i < kDim; ++i) {
shape_[i] = 1;
}
auto size = detail::CalcSize(shape_);
if (device.IsCUDA()) {
data_.SetDevice(device);
}
data_.Resize(size);
if (device.IsCUDA()) {
data_.DevicePointer(); // Pull to device
}
}
/**
* Initialize from 2 host iterators.
*/
template <typename It, typename I, int32_t D>
explicit Tensor(It begin, It end, I const (&shape)[D], DeviceOrd device, Order order = kC)
: order_{order} {
auto &h_vec = data_.HostVector();
h_vec.insert(h_vec.begin(), begin, end);
// shape
this->Initialize(shape, device);
}
template <typename I, int32_t D>
explicit Tensor(std::initializer_list<T> data, I const (&shape)[D], DeviceOrd device,
Order order = kC)
: order_{order} {
auto &h_vec = data_.HostVector();
h_vec = data;
// shape
this->Initialize(shape, device);
}
/**
* \brief Index operator. Not thread safe, should not be used in performance critical
* region. For more efficient indexing, consider getting a view first.
*/
template <typename... Index>
T &operator()(Index &&...idx) {
return this->HostView()(std::forward<Index>(idx)...);
}
/**
* \brief Index operator. Not thread safe, should not be used in performance critical
* region. For more efficient indexing, consider getting a view first.
*/
template <typename... Index>
T const &operator()(Index &&...idx) const {
return this->HostView()(std::forward<Index>(idx)...);
}
/**
* @brief Get a @ref TensorView for this tensor.
*/
auto View(DeviceOrd device) {
if (device.IsCUDA()) {
data_.SetDevice(device);
auto span = data_.DeviceSpan();
return TensorView<T, kDim>{span, shape_, device, order_};
} else {
auto span = data_.HostSpan();
return TensorView<T, kDim>{span, shape_, device, order_};
}
}
auto View(DeviceOrd device) const {
if (device.IsCUDA()) {
data_.SetDevice(device);
auto span = data_.ConstDeviceSpan();
return TensorView<T const, kDim>{span, shape_, device, order_};
} else {
auto span = data_.ConstHostSpan();
return TensorView<T const, kDim>{span, shape_, device, order_};
}
}
auto HostView() { return this->View(DeviceOrd::CPU()); }
auto HostView() const { return this->View(DeviceOrd::CPU()); }
[[nodiscard]] std::size_t Size() const { return data_.Size(); }
[[nodiscard]] bool Empty() const { return Size() == 0; }
auto Shape() const { return common::Span<size_t const, kDim>{shape_}; }
auto Shape(size_t i) const { return shape_[i]; }
HostDeviceVector<T> *Data() { return &data_; }
HostDeviceVector<T> const *Data() const { return &data_; }
/**
* \brief Visitor function for modification that changes shape and data.
*
* \tparam Fn function that takes a pointer to `HostDeviceVector` and a static sized
* span as parameters.
*/
template <typename Fn>
void ModifyInplace(Fn &&fn) {
fn(this->Data(), common::Span<size_t, kDim>{this->shape_});
CHECK_EQ(this->Data()->Size(), detail::CalcSize(this->shape_))
<< "Inconsistent size after modification.";
}
/**
* \brief Reshape the tensor.
*
* If the total size is changed, then data in this tensor is no longer valid.
*/
template <typename... S, detail::EnableIfIntegral<S...> * = nullptr>
void Reshape(S &&...s) {
static_assert(sizeof...(S) <= kDim, "Invalid shape.");
detail::ReshapeImpl<0>(shape_, std::forward<S>(s)...);
auto constexpr kEnd = sizeof...(S);
static_assert(kEnd <= kDim, "Invalid shape.");
std::fill(shape_ + kEnd, shape_ + kDim, 1);
auto n = detail::CalcSize(shape_);
data_.Resize(n);
}
/**
* \brief Reshape the tensor.
*
* If the total size is changed, then data in this tensor is no longer valid.
*/
template <size_t D>
void Reshape(common::Span<size_t const, D> shape) {
static_assert(D <= kDim, "Invalid shape.");
std::copy(shape.data(), shape.data() + D, this->shape_);
std::fill(shape_ + D, shape_ + kDim, 1);
auto n = detail::CalcSize(shape_);
data_.Resize(n);
}
template <size_t D>
void Reshape(size_t (&shape)[D]) {
this->Reshape(common::Span<size_t const, D>{shape});
}
/**
* \brief Get a host view on the slice.
*/
template <typename... S>
auto Slice(S &&...slices) const {
return this->HostView().Slice(std::forward<S>(slices)...);
}
/**
* \brief Get a host view on the slice.
*/
template <typename... S>
auto Slice(S &&...slices) {
return this->HostView().Slice(std::forward<S>(slices)...);
}
/**
* \brief Set device ordinal for this tensor.
*/
void SetDevice(DeviceOrd device) const { data_.SetDevice(device); }
[[nodiscard]] DeviceOrd Device() const { return data_.Device(); }
};
template <typename T>
using Matrix = Tensor<T, 2>;
template <typename T>
using Vector = Tensor<T, 1>;
/**
* \brief Create an array without initialization.
*/
template <typename T, typename... Index>
auto Empty(Context const *ctx, Index &&...index) {
Tensor<T, sizeof...(Index)> t;
t.SetDevice(ctx->Device());
t.Reshape(index...);
return t;
}
/**
* \brief Create an array with value v.
*/
template <typename T, typename... Index>
auto Constant(Context const *ctx, T v, Index &&...index) {
Tensor<T, sizeof...(Index)> t;
t.SetDevice(ctx->Device());
t.Reshape(index...);
t.Data()->Fill(std::move(v));
return t;
}
/**
* \brief Like `np.zeros`, return a new array of given shape and type, filled with zeros.
*/
template <typename T, typename... Index>
auto Zeros(Context const *ctx, Index &&...index) {
return Constant(ctx, static_cast<T>(0), index...);
}
// Only first axis is supported for now.
template <typename T, int32_t D>
void Stack(Tensor<T, D> *l, Tensor<T, D> const &r) {
if (r.Device().IsCUDA()) {
l->SetDevice(r.Device());
}
l->ModifyInplace([&](HostDeviceVector<T> *data, common::Span<size_t, D> shape) {
for (size_t i = 1; i < D; ++i) {
if (shape[i] == 0) {
shape[i] = r.Shape(i);
} else {
CHECK_EQ(shape[i], r.Shape(i));
}
}
data->Extend(*r.Data());
shape[0] = l->Shape(0) + r.Shape(0);
});
}
} // namespace xgboost::linalg
#if defined(LINALG_HD)
#undef LINALG_HD
#endif // defined(LINALG_HD)
#endif // XGBOOST_LINALG_H_