246 lines
7.3 KiB
Python

# coding: utf-8
# pylint: disable=too-many-locals, too-many-arguments, invalid-name,
# pylint: disable=too-many-branches
"""Plotting Library."""
from __future__ import absolute_import
import re
from io import BytesIO
import numpy as np
from .core import Booster
from .sklearn import XGBModel
def plot_importance(booster, ax=None, height=0.2,
xlim=None, ylim=None, title='Feature importance',
xlabel='F score', ylabel='Features',
grid=True, **kwargs):
"""Plot importance based on fitted trees.
Parameters
----------
booster : Booster, XGBModel or dict
Booster or XGBModel instance, or dict taken by Booster.get_fscore()
ax : matplotlib Axes, default None
Target axes instance. If None, new figure and axes will be created.
height : float, default 0.2
Bar height, passed to ax.barh()
xlim : tuple, default None
Tuple passed to axes.xlim()
ylim : tuple, default None
Tuple passed to axes.ylim()
title : str, default "Feature importance"
Axes title. To disable, pass None.
xlabel : str, default "F score"
X axis title label. To disable, pass None.
ylabel : str, default "Features"
Y axis title label. To disable, pass None.
kwargs :
Other keywords passed to ax.barh()
Returns
-------
ax : matplotlib Axes
"""
# TODO: move this to compat.py
try:
import matplotlib.pyplot as plt
except ImportError:
raise ImportError('You must install matplotlib to plot importance')
if isinstance(booster, XGBModel):
importance = booster.booster().get_fscore()
elif isinstance(booster, Booster):
importance = booster.get_fscore()
elif isinstance(booster, dict):
importance = booster
else:
raise ValueError('tree must be Booster, XGBModel or dict instance')
if len(importance) == 0:
raise ValueError('Booster.get_fscore() results in empty')
tuples = [(k, importance[k]) for k in importance]
tuples = sorted(tuples, key=lambda x: x[1])
labels, values = zip(*tuples)
if ax is None:
_, ax = plt.subplots(1, 1)
ylocs = np.arange(len(values))
ax.barh(ylocs, values, align='center', height=height, **kwargs)
for x, y in zip(values, ylocs):
ax.text(x + 1, y, x, va='center')
ax.set_yticks(ylocs)
ax.set_yticklabels(labels)
if xlim is not None:
if not isinstance(xlim, tuple) or len(xlim) != 2:
raise ValueError('xlim must be a tuple of 2 elements')
else:
xlim = (0, max(values) * 1.1)
ax.set_xlim(xlim)
if ylim is not None:
if not isinstance(ylim, tuple) or len(ylim) != 2:
raise ValueError('ylim must be a tuple of 2 elements')
else:
ylim = (-1, len(importance))
ax.set_ylim(ylim)
if title is not None:
ax.set_title(title)
if xlabel is not None:
ax.set_xlabel(xlabel)
if ylabel is not None:
ax.set_ylabel(ylabel)
ax.grid(grid)
return ax
_NODEPAT = re.compile(r'(\d+):\[(.+)\]')
_LEAFPAT = re.compile(r'(\d+):(leaf=.+)')
_EDGEPAT = re.compile(r'yes=(\d+),no=(\d+),missing=(\d+)')
_EDGEPAT2 = re.compile(r'yes=(\d+),no=(\d+)')
def _parse_node(graph, text):
"""parse dumped node"""
match = _NODEPAT.match(text)
if match is not None:
node = match.group(1)
graph.node(node, label=match.group(2), shape='circle')
return node
match = _LEAFPAT.match(text)
if match is not None:
node = match.group(1)
graph.node(node, label=match.group(2), shape='box')
return node
raise ValueError('Unable to parse node: {0}'.format(text))
def _parse_edge(graph, node, text, yes_color='#0000FF', no_color='#FF0000'):
"""parse dumped edge"""
try:
match = _EDGEPAT.match(text)
if match is not None:
yes, no, missing = match.groups()
if yes == missing:
graph.edge(node, yes, label='yes, missing', color=yes_color)
graph.edge(node, no, label='no', color=no_color)
else:
graph.edge(node, yes, label='yes', color=yes_color)
graph.edge(node, no, label='no, missing', color=no_color)
return
except ValueError:
pass
match = _EDGEPAT2.match(text)
if match is not None:
yes, no = match.groups()
graph.edge(node, yes, label='yes', color=yes_color)
graph.edge(node, no, label='no', color=no_color)
return
raise ValueError('Unable to parse edge: {0}'.format(text))
def to_graphviz(booster, num_trees=0, rankdir='UT',
yes_color='#0000FF', no_color='#FF0000', **kwargs):
"""Convert specified tree to graphviz instance. IPython can automatically plot the
returned graphiz instance. Otherwise, you shoud call .render() method
of the returned graphiz instance.
Parameters
----------
booster : Booster, XGBModel
Booster or XGBModel instance
num_trees : int, default 0
Specify the ordinal number of target tree
rankdir : str, default "UT"
Passed to graphiz via graph_attr
yes_color : str, default '#0000FF'
Edge color when meets the node condigion.
no_color : str, default '#FF0000'
Edge color when doesn't meet the node condigion.
kwargs :
Other keywords passed to graphviz graph_attr
Returns
-------
ax : matplotlib Axes
"""
try:
from graphviz import Digraph
except ImportError:
raise ImportError('You must install graphviz to plot tree')
if not isinstance(booster, (Booster, XGBModel)):
raise ValueError('booster must be Booster or XGBModel instance')
if isinstance(booster, XGBModel):
booster = booster.booster()
tree = booster.get_dump()[num_trees]
tree = tree.split()
kwargs = kwargs.copy()
kwargs.update({'rankdir': rankdir})
graph = Digraph(graph_attr=kwargs)
for i, text in enumerate(tree):
if text[0].isdigit():
node = _parse_node(graph, text)
else:
if i == 0:
# 1st string must be node
raise ValueError('Unable to parse given string as tree')
_parse_edge(graph, node, text, yes_color=yes_color,
no_color=no_color)
return graph
def plot_tree(booster, num_trees=0, rankdir='UT', ax=None, **kwargs):
"""Plot specified tree.
Parameters
----------
booster : Booster, XGBModel
Booster or XGBModel instance
num_trees : int, default 0
Specify the ordinal number of target tree
rankdir : str, default "UT"
Passed to graphiz via graph_attr
ax : matplotlib Axes, default None
Target axes instance. If None, new figure and axes will be created.
kwargs :
Other keywords passed to to_graphviz
Returns
-------
ax : matplotlib Axes
"""
try:
import matplotlib.pyplot as plt
import matplotlib.image as image
except ImportError:
raise ImportError('You must install matplotlib to plot tree')
if ax is None:
_, ax = plt.subplots(1, 1)
g = to_graphviz(booster, num_trees=num_trees, rankdir=rankdir, **kwargs)
s = BytesIO()
s.write(g.pipe(format='png'))
s.seek(0)
img = image.imread(s)
ax.imshow(img)
ax.axis('off')
return ax