126 lines
5.5 KiB
R
126 lines
5.5 KiB
R
#' Plot feature importance as a bar graph
|
|
#'
|
|
#' Represents previously calculated feature importance as a bar graph.
|
|
#' \code{xgb.plot.importance} uses base R graphics, while \code{xgb.ggplot.importance} uses the ggplot backend.
|
|
#'
|
|
#' @param importance_matrix a \code{data.table} returned by \code{\link{xgb.importance}}.
|
|
#' @param top_n maximal number of top features to include into the plot.
|
|
#' @param measure the name of importance measure to plot.
|
|
#' When \code{NULL}, 'Gain' would be used for trees and 'Weight' would be used for gblinear.
|
|
#' @param rel_to_first whether importance values should be represented as relative to the highest ranked feature.
|
|
#' See Details.
|
|
#' @param left_margin (base R barplot) allows to adjust the left margin size to fit feature names.
|
|
#' When it is NULL, the existing \code{par('mar')} is used.
|
|
#' @param cex (base R barplot) passed as \code{cex.names} parameter to \code{barplot}.
|
|
#' @param plot (base R barplot) whether a barplot should be produced.
|
|
#' If FALSE, only a data.table is returned.
|
|
#' @param n_clusters (ggplot only) a \code{numeric} vector containing the min and the max range
|
|
#' of the possible number of clusters of bars.
|
|
#' @param ... other parameters passed to \code{barplot} (except horiz, border, cex.names, names.arg, and las).
|
|
#'
|
|
#' @details
|
|
#' The graph represents each feature as a horizontal bar of length proportional to the importance of a feature.
|
|
#' Features are shown ranked in a decreasing importance order.
|
|
#' It works for importances from both \code{gblinear} and \code{gbtree} models.
|
|
#'
|
|
#' When \code{rel_to_first = FALSE}, the values would be plotted as they were in \code{importance_matrix}.
|
|
#' For gbtree model, that would mean being normalized to the total of 1
|
|
#' ("what is feature's importance contribution relative to the whole model?").
|
|
#' For linear models, \code{rel_to_first = FALSE} would show actual values of the coefficients.
|
|
#' Setting \code{rel_to_first = TRUE} allows to see the picture from the perspective of
|
|
#' "what is feature's importance contribution relative to the most important feature?"
|
|
#'
|
|
#' The ggplot-backend method also performs 1-D clustering of the importance values,
|
|
#' with bar colors corresponding to different clusters that have somewhat similar importance values.
|
|
#'
|
|
#' @return
|
|
#' The \code{xgb.plot.importance} function creates a \code{barplot} (when \code{plot=TRUE})
|
|
#' and silently returns a processed data.table with \code{n_top} features sorted by importance.
|
|
#'
|
|
#' The \code{xgb.ggplot.importance} function returns a ggplot graph which could be customized afterwards.
|
|
#' E.g., to change the title of the graph, add \code{+ ggtitle("A GRAPH NAME")} to the result.
|
|
#'
|
|
#' @seealso
|
|
#' \code{\link[graphics]{barplot}}.
|
|
#'
|
|
#' @examples
|
|
#' data(agaricus.train)
|
|
#'
|
|
#' bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 3,
|
|
#' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
|
|
#'
|
|
#' importance_matrix <- xgb.importance(colnames(agaricus.train$data), model = bst)
|
|
#'
|
|
#' xgb.plot.importance(importance_matrix, rel_to_first = TRUE, xlab = "Relative importance")
|
|
#'
|
|
#' (gg <- xgb.ggplot.importance(importance_matrix, measure = "Frequency", rel_to_first = TRUE))
|
|
#' gg + ggplot2::ylab("Frequency")
|
|
#'
|
|
#' @rdname xgb.plot.importance
|
|
#' @export
|
|
xgb.plot.importance <- function(importance_matrix = NULL, top_n = NULL, measure = NULL,
|
|
rel_to_first = FALSE, left_margin = 10, cex = NULL, plot = TRUE, ...) {
|
|
check.deprecation(...)
|
|
if (!is.data.table(importance_matrix)) {
|
|
stop("importance_matrix: must be a data.table")
|
|
}
|
|
|
|
imp_names <- colnames(importance_matrix)
|
|
if (is.null(measure)) {
|
|
if (all(c("Feature", "Gain") %in% imp_names)) {
|
|
measure <- "Gain"
|
|
} else if (all(c("Feature", "Weight") %in% imp_names)) {
|
|
measure <- "Weight"
|
|
} else {
|
|
stop("Importance matrix column names are not as expected!")
|
|
}
|
|
} else {
|
|
if (!measure %in% imp_names)
|
|
stop("Invalid `measure`")
|
|
if (!"Feature" %in% imp_names)
|
|
stop("Importance matrix column names are not as expected!")
|
|
}
|
|
|
|
# also aggregate, just in case when the values were not yet summed up by feature
|
|
importance_matrix <- importance_matrix[, Importance := sum(get(measure)), by = Feature]
|
|
|
|
# make sure it's ordered
|
|
importance_matrix <- importance_matrix[order(-abs(Importance))]
|
|
|
|
if (!is.null(top_n)) {
|
|
top_n <- min(top_n, nrow(importance_matrix))
|
|
importance_matrix <- head(importance_matrix, top_n)
|
|
}
|
|
if (rel_to_first) {
|
|
importance_matrix[, Importance := Importance / max(abs(Importance))]
|
|
}
|
|
if (is.null(cex)) {
|
|
cex <- 2.5 / log2(1 + nrow(importance_matrix))
|
|
}
|
|
|
|
if (plot) {
|
|
op <- par(no.readonly = TRUE)
|
|
mar <- op$mar
|
|
if (!is.null(left_margin))
|
|
mar[2] <- left_margin
|
|
par(mar = mar)
|
|
|
|
# reverse the order of rows to have the highest ranked at the top
|
|
importance_matrix[rev(seq_len(nrow(importance_matrix))),
|
|
barplot(Importance, horiz = TRUE, border = NA, cex.names = cex,
|
|
names.arg = Feature, las = 1, ...)]
|
|
grid(NULL, NA)
|
|
# redraw over the grid
|
|
importance_matrix[rev(seq_len(nrow(importance_matrix))),
|
|
barplot(Importance, horiz = TRUE, border = NA, add = TRUE)]
|
|
par(op)
|
|
}
|
|
|
|
invisible(importance_matrix)
|
|
}
|
|
|
|
# Avoid error messages during CRAN check.
|
|
# The reason is that these variables are never declared
|
|
# They are mainly column names inferred by Data.table...
|
|
globalVariables(c("Feature", "Importance"))
|