943 lines
34 KiB
C++
943 lines
34 KiB
C++
/*!
|
|
* Copyright 2020 by XGBoost Contributors
|
|
*
|
|
* \brief An implemenation of Ryu algorithm:
|
|
*
|
|
* https://dl.acm.org/citation.cfm?id=3192369
|
|
*
|
|
* The code is adopted from original (half) c implementation:
|
|
* https://github.com/ulfjack/ryu.git with some more comments and tidying. License is
|
|
* attached below.
|
|
*
|
|
* Copyright 2018 Ulf Adams
|
|
*
|
|
* The contents of this file may be used under the terms of the Apache License,
|
|
* Version 2.0.
|
|
*
|
|
* (See accompanying file LICENSE-Apache or copy at
|
|
* http: *www.apache.org/licenses/LICENSE-2.0)
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* the Boost Software License, Version 1.0.
|
|
* (See accompanying file LICENSE-Boost or copy at
|
|
* https://www.boost.org/LICENSE_1_0.txt)
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, this software
|
|
* is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
* KIND, either express or implied.
|
|
*/
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cstring>
|
|
#include <cmath>
|
|
|
|
#include "xgboost/logging.h"
|
|
#include "charconv.h"
|
|
|
|
#if defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
namespace {
|
|
inline int32_t __builtin_clzll(uint64_t x) {
|
|
return static_cast<int32_t>(__lzcnt64(x));
|
|
}
|
|
} // anonymous namespace
|
|
#endif
|
|
|
|
/*
|
|
* We did some cleanup from the original implementation instead of doing line to line
|
|
* port.
|
|
*
|
|
* The basic concept of floating rounding is, for a floating point number, we need to
|
|
* convert base2 to base10. During which we need to implement correct rounding. Hence on
|
|
* base2 we have:
|
|
*
|
|
* {low, value, high}
|
|
*
|
|
* 3 values, representing round down, no rounding, and round up. In the original
|
|
* implementation and paper, variables representing these 3 values are typically postfixed
|
|
* with m, r, p like {vr, vm, vp}. Here we name them more verbosely.
|
|
*/
|
|
|
|
namespace xgboost {
|
|
namespace detail {
|
|
static constexpr char kItoaLut[200] = {
|
|
'0', '0', '0', '1', '0', '2', '0', '3', '0', '4', '0', '5', '0', '6', '0',
|
|
'7', '0', '8', '0', '9', '1', '0', '1', '1', '1', '2', '1', '3', '1', '4',
|
|
'1', '5', '1', '6', '1', '7', '1', '8', '1', '9', '2', '0', '2', '1', '2',
|
|
'2', '2', '3', '2', '4', '2', '5', '2', '6', '2', '7', '2', '8', '2', '9',
|
|
'3', '0', '3', '1', '3', '2', '3', '3', '3', '4', '3', '5', '3', '6', '3',
|
|
'7', '3', '8', '3', '9', '4', '0', '4', '1', '4', '2', '4', '3', '4', '4',
|
|
'4', '5', '4', '6', '4', '7', '4', '8', '4', '9', '5', '0', '5', '1', '5',
|
|
'2', '5', '3', '5', '4', '5', '5', '5', '6', '5', '7', '5', '8', '5', '9',
|
|
'6', '0', '6', '1', '6', '2', '6', '3', '6', '4', '6', '5', '6', '6', '6',
|
|
'7', '6', '8', '6', '9', '7', '0', '7', '1', '7', '2', '7', '3', '7', '4',
|
|
'7', '5', '7', '6', '7', '7', '7', '8', '7', '9', '8', '0', '8', '1', '8',
|
|
'2', '8', '3', '8', '4', '8', '5', '8', '6', '8', '7', '8', '8', '8', '9',
|
|
'9', '0', '9', '1', '9', '2', '9', '3', '9', '4', '9', '5', '9', '6', '9',
|
|
'7', '9', '8', '9', '9'};
|
|
|
|
constexpr uint32_t Tens(uint32_t n) { return n == 1 ? 10 : (Tens(n - 1) * 10); }
|
|
|
|
struct UnsignedFloatBase2;
|
|
|
|
struct UnsignedFloatBase10 {
|
|
uint32_t mantissa;
|
|
// Decimal exponent's range is -45 to 38
|
|
// inclusive, and can fit in a short if needed.
|
|
int32_t exponent;
|
|
};
|
|
|
|
template <typename To, typename From>
|
|
To BitCast(From&& from) {
|
|
static_assert(sizeof(From) == sizeof(To), "Bit cast doesn't change output size.");
|
|
To t;
|
|
std::memcpy(&t, &from, sizeof(To));
|
|
return t;
|
|
}
|
|
|
|
struct IEEE754 {
|
|
static constexpr uint32_t kFloatMantissaBits = 23;
|
|
static constexpr uint32_t kFloatBias = 127;
|
|
static constexpr uint32_t kFloatExponentBits = 8;
|
|
|
|
static void Decode(float f, UnsignedFloatBase2* uf, bool* signbit);
|
|
static float Encode(UnsignedFloatBase2 const& uf, bool signbit);
|
|
|
|
static float Infinity(bool sign) {
|
|
uint32_t f =
|
|
((static_cast<uint32_t>(sign))
|
|
<< (IEEE754::kFloatExponentBits + IEEE754::kFloatMantissaBits)) |
|
|
(0xffu << IEEE754::kFloatMantissaBits);
|
|
float result = BitCast<float>(f);
|
|
return result;
|
|
}
|
|
};
|
|
|
|
struct UnsignedFloatBase2 {
|
|
uint32_t mantissa;
|
|
// Decimal exponent's range is -45 to 38
|
|
// inclusive, and can fit in a short if needed.
|
|
uint32_t exponent;
|
|
|
|
bool Infinite() const {
|
|
return exponent == ((1u << IEEE754::kFloatExponentBits) - 1u);
|
|
}
|
|
bool Zero() const {
|
|
return mantissa == 0 && exponent == 0;
|
|
}
|
|
};
|
|
|
|
inline void IEEE754::Decode(float f, UnsignedFloatBase2 *uf, bool *signbit) {
|
|
auto bits = BitCast<uint32_t>(f);
|
|
// Decode bits into sign, mantissa, and exponent.
|
|
*signbit = std::signbit(f);
|
|
uf->mantissa = bits & ((1u << kFloatMantissaBits) - 1);
|
|
uf->exponent = (bits >> IEEE754::kFloatMantissaBits) &
|
|
((1u << IEEE754::kFloatExponentBits) - 1); // remove signbit
|
|
}
|
|
|
|
inline float IEEE754::Encode(UnsignedFloatBase2 const &uf, bool signbit) {
|
|
uint32_t f =
|
|
((((static_cast<uint32_t>(signbit)) << IEEE754::kFloatExponentBits) |
|
|
static_cast<uint32_t>(uf.exponent))
|
|
<< IEEE754::kFloatMantissaBits) |
|
|
uf.mantissa;
|
|
return BitCast<float>(f);
|
|
}
|
|
|
|
// Represents the interval of information-preserving outputs.
|
|
struct MantissaInteval {
|
|
int32_t exponent;
|
|
// low: smaller half way point
|
|
uint32_t mantissa_low;
|
|
// correct: f
|
|
uint32_t mantissa_correct;
|
|
// high: larger half way point
|
|
uint32_t mantissa_high;
|
|
};
|
|
|
|
struct RyuPowLogUtils {
|
|
// This table is generated by PrintFloatLookupTable from ryu. We adopted only the float
|
|
// 32 table instead of double full table.
|
|
// f2s_full_table.h
|
|
uint32_t constexpr static kFloatPow5InvBitcount = 59;
|
|
static constexpr uint64_t kFloatPow5InvSplit[55] = {
|
|
576460752303423489u, 461168601842738791u, 368934881474191033u,
|
|
295147905179352826u, 472236648286964522u, 377789318629571618u,
|
|
302231454903657294u, 483570327845851670u, 386856262276681336u,
|
|
309485009821345069u, 495176015714152110u, 396140812571321688u,
|
|
316912650057057351u, 507060240091291761u, 405648192073033409u,
|
|
324518553658426727u, 519229685853482763u, 415383748682786211u,
|
|
332306998946228969u, 531691198313966350u, 425352958651173080u,
|
|
340282366920938464u, 544451787073501542u, 435561429658801234u,
|
|
348449143727040987u, 557518629963265579u, 446014903970612463u,
|
|
356811923176489971u, 570899077082383953u, 456719261665907162u,
|
|
365375409332725730u, 292300327466180584u, 467680523945888934u,
|
|
374144419156711148u, 299315535325368918u, 478904856520590269u,
|
|
383123885216472215u, 306499108173177772u, 490398573077084435u,
|
|
392318858461667548u, 313855086769334039u, 502168138830934462u,
|
|
401734511064747569u, 321387608851798056u, 514220174162876889u,
|
|
411376139330301511u, 329100911464241209u, 526561458342785934u,
|
|
421249166674228747u, 336999333339382998u, 539198933343012796u,
|
|
431359146674410237u, 345087317339528190u, 552139707743245103u,
|
|
441711766194596083u};
|
|
|
|
uint32_t constexpr static kFloatPow5Bitcount = 61;
|
|
static constexpr uint64_t kFloatPow5Split[47] = {
|
|
1152921504606846976u, 1441151880758558720u, 1801439850948198400u,
|
|
2251799813685248000u, 1407374883553280000u, 1759218604441600000u,
|
|
2199023255552000000u, 1374389534720000000u, 1717986918400000000u,
|
|
2147483648000000000u, 1342177280000000000u, 1677721600000000000u,
|
|
2097152000000000000u, 1310720000000000000u, 1638400000000000000u,
|
|
2048000000000000000u, 1280000000000000000u, 1600000000000000000u,
|
|
2000000000000000000u, 1250000000000000000u, 1562500000000000000u,
|
|
1953125000000000000u, 1220703125000000000u, 1525878906250000000u,
|
|
1907348632812500000u, 1192092895507812500u, 1490116119384765625u,
|
|
1862645149230957031u, 1164153218269348144u, 1455191522836685180u,
|
|
1818989403545856475u, 2273736754432320594u, 1421085471520200371u,
|
|
1776356839400250464u, 2220446049250313080u, 1387778780781445675u,
|
|
1734723475976807094u, 2168404344971008868u, 1355252715606880542u,
|
|
1694065894508600678u, 2117582368135750847u, 1323488980084844279u,
|
|
1654361225106055349u, 2067951531382569187u, 1292469707114105741u,
|
|
1615587133892632177u, 2019483917365790221u};
|
|
|
|
static uint32_t Pow5Factor(uint32_t value) noexcept(true) {
|
|
uint32_t count = 0;
|
|
for (;;) {
|
|
const uint32_t q = value / 5;
|
|
const uint32_t r = value % 5;
|
|
if (r != 0) {
|
|
break;
|
|
}
|
|
value = q;
|
|
++count;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// Returns true if value is divisible by 5^p.
|
|
static bool MultipleOfPowerOf5(const uint32_t value, const uint32_t p) noexcept(true) {
|
|
return Pow5Factor(value) >= p;
|
|
}
|
|
|
|
// Returns true if value is divisible by 2^p.
|
|
static bool MultipleOfPowerOf2(const uint32_t value, const uint32_t p) noexcept(true) {
|
|
#ifdef __GNUC__
|
|
return static_cast<uint32_t>(__builtin_ctz(value)) >= p;
|
|
#else
|
|
return (value & ((1u << p) - 1)) == 0;
|
|
#endif // __GNUC__
|
|
}
|
|
|
|
// Returns e == 0 ? 1 : ceil(log_2(5^e)).
|
|
static uint32_t Pow5Bits(const int32_t e) noexcept(true) {
|
|
return static_cast<uint32_t>(((e * 163391164108059ull) >> 46) + 1);
|
|
}
|
|
|
|
static int32_t Log2Pow5(const int32_t e) {
|
|
// This approximation works up to the point that the multiplication
|
|
// overflows at e = 3529. If the multiplication were done in 64 bits, it
|
|
// would fail at 5^4004 which is just greater than 2^9297.
|
|
assert(e >= 0);
|
|
assert(e <= 3528);
|
|
return static_cast<int32_t>(((static_cast<uint32_t>(e)) * 1217359) >> 19);
|
|
}
|
|
|
|
static int32_t CeilLog2Pow5(const int32_t e) {
|
|
return RyuPowLogUtils::Log2Pow5(e) + 1;
|
|
}
|
|
|
|
/*
|
|
* \brief Multiply 32-bit and 64-bit -> 128 bit, then access the higher bits.
|
|
*/
|
|
static uint32_t MulShift(const uint32_t x, const uint64_t y,
|
|
const int32_t shift) noexcept(true) {
|
|
// For 32-bit * 64-bit: x * y, it can be decomposed into:
|
|
//
|
|
// x * (y_high + y_low) = (x * y_high) + (x * y_low)
|
|
//
|
|
// For more general case 64-bit * 64-bit, see https://stackoverflow.com/a/1541458
|
|
const uint32_t y_low = static_cast<uint32_t>(y);
|
|
const uint32_t y_high = static_cast<uint32_t>(y >> 32);
|
|
|
|
const uint64_t low = static_cast<uint64_t>(x) * y_low;
|
|
const uint64_t high = static_cast<uint64_t>(x) * y_high;
|
|
|
|
const uint64_t sum = (low >> 32) + high;
|
|
const uint64_t shifted_sum = sum >> (shift - 32);
|
|
|
|
return static_cast<uint32_t>(shifted_sum);
|
|
}
|
|
|
|
/*
|
|
* \brief floor(5^q/2*k) and shift by j
|
|
*/
|
|
static uint32_t MulPow5InvDivPow2(const uint32_t m, const uint32_t q,
|
|
const int32_t j) noexcept(true) {
|
|
return MulShift(m, kFloatPow5InvSplit[q], j);
|
|
}
|
|
|
|
/*
|
|
* \brief floor(2^k/5^q) + 1 and shift by j
|
|
*/
|
|
static uint32_t MulPow5divPow2(const uint32_t m, const uint32_t i,
|
|
const int32_t j) noexcept(true) {
|
|
// clang-tidy makes false assumption that can lead to i >= 47, which is impossible.
|
|
// Can be verified by enumerating all float32 values.
|
|
return MulShift(m, kFloatPow5Split[i], j); // NOLINT
|
|
}
|
|
|
|
static uint32_t FloorLog2(const uint64_t value) {
|
|
return 63 - __builtin_clzll(value);
|
|
}
|
|
|
|
/*
|
|
* \brief floor(e * log_10(2)).
|
|
*/
|
|
static uint32_t Log10Pow2(const int32_t e) noexcept(true) {
|
|
// The first value this approximation fails for is 2^1651 which is just
|
|
// greater than 10^297.
|
|
assert(e >= 0);
|
|
assert(e <= 1 << 15);
|
|
return static_cast<uint32_t>((static_cast<uint64_t>(e) * 169464822037455ull) >> 49);
|
|
}
|
|
|
|
// Returns floor(e * log_10(5)).
|
|
static uint32_t Log10Pow5(const int32_t expoent) noexcept(true) {
|
|
// The first value this approximation fails for is 5^2621 which is just
|
|
// greater than 10^1832.
|
|
assert(expoent >= 0);
|
|
assert(expoent <= 1 << 15);
|
|
return static_cast<uint32_t>(
|
|
((static_cast<uint64_t>(expoent)) * 196742565691928ull) >> 48);
|
|
}
|
|
};
|
|
|
|
constexpr uint64_t RyuPowLogUtils::kFloatPow5InvSplit[55];
|
|
constexpr uint64_t RyuPowLogUtils::kFloatPow5Split[47];
|
|
|
|
class PowerBaseComputer {
|
|
private:
|
|
static uint8_t
|
|
ToDecimalBase(bool const accept_bounds, uint32_t const mantissa_low_shift,
|
|
MantissaInteval const base2, MantissaInteval *base10,
|
|
bool *mantissa_low_is_trailing_zeros,
|
|
bool *mantissa_out_is_trailing_zeros) noexcept(true) {
|
|
uint8_t last_removed_digit = 0;
|
|
if (base2.exponent >= 0) {
|
|
const uint32_t q = RyuPowLogUtils::Log10Pow2(base2.exponent);
|
|
base10->exponent = static_cast<int32_t>(q);
|
|
const int32_t k = RyuPowLogUtils::kFloatPow5InvBitcount +
|
|
RyuPowLogUtils::Pow5Bits(static_cast<int32_t>(q)) - 1;
|
|
const int32_t i = -base2.exponent + static_cast<int32_t>(q) + k;
|
|
base10->mantissa_low =
|
|
RyuPowLogUtils::MulPow5InvDivPow2(base2.mantissa_low, q, i);
|
|
base10->mantissa_correct =
|
|
RyuPowLogUtils::MulPow5InvDivPow2(base2.mantissa_correct, q, i);
|
|
base10->mantissa_high =
|
|
RyuPowLogUtils::MulPow5InvDivPow2(base2.mantissa_high, q, i);
|
|
|
|
if (q != 0 &&
|
|
(base10->mantissa_high - 1) / 10 <= base10->mantissa_low / 10) {
|
|
// We need to know one removed digit even if we are not going to loop
|
|
// below. We could use q = X - 1 above, except that would require 33
|
|
// bits for the result, and we've found that 32-bit arithmetic is
|
|
// faster even on 64-bit machines.
|
|
const int32_t l =
|
|
RyuPowLogUtils::kFloatPow5InvBitcount +
|
|
RyuPowLogUtils::Pow5Bits(static_cast<int32_t>(q - 1)) - 1;
|
|
last_removed_digit = static_cast<uint8_t>(
|
|
RyuPowLogUtils::MulPow5InvDivPow2(
|
|
base2.mantissa_correct, q - 1,
|
|
-base2.exponent + static_cast<int32_t>(q) - 1 + l) %
|
|
10);
|
|
}
|
|
if (q <= 9) {
|
|
// The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be
|
|
// safe as well. Only one of mantissa_high, mantissa_correct, and mantissa_low can
|
|
// be a multiple of 5, if any.
|
|
if (base2.mantissa_correct % 5 == 0) {
|
|
*mantissa_out_is_trailing_zeros =
|
|
RyuPowLogUtils::MultipleOfPowerOf5(base2.mantissa_correct, q);
|
|
} else if (accept_bounds) {
|
|
*mantissa_low_is_trailing_zeros =
|
|
RyuPowLogUtils::MultipleOfPowerOf5(base2.mantissa_low, q);
|
|
} else {
|
|
base10->mantissa_high -=
|
|
RyuPowLogUtils::MultipleOfPowerOf5(base2.mantissa_high, q);
|
|
}
|
|
}
|
|
} else {
|
|
const uint32_t q = RyuPowLogUtils::Log10Pow5(-base2.exponent);
|
|
base10->exponent = static_cast<int32_t>(q) + base2.exponent;
|
|
const int32_t i = -base2.exponent - static_cast<int32_t>(q);
|
|
const int32_t k =
|
|
RyuPowLogUtils::Pow5Bits(i) - RyuPowLogUtils::kFloatPow5Bitcount;
|
|
int32_t j = static_cast<int32_t>(q) - k;
|
|
base10->mantissa_correct = RyuPowLogUtils::MulPow5divPow2(
|
|
base2.mantissa_correct, static_cast<uint32_t>(i), j);
|
|
base10->mantissa_high = RyuPowLogUtils::MulPow5divPow2(
|
|
base2.mantissa_high, static_cast<uint32_t>(i), j);
|
|
base10->mantissa_low = RyuPowLogUtils::MulPow5divPow2(
|
|
base2.mantissa_low, static_cast<uint32_t>(i), j);
|
|
|
|
if (q != 0 &&
|
|
(base10->mantissa_high - 1) / 10 <= base10->mantissa_low / 10) {
|
|
j = static_cast<int32_t>(q) - 1 -
|
|
(RyuPowLogUtils::Pow5Bits(i + 1) -
|
|
RyuPowLogUtils::kFloatPow5Bitcount);
|
|
last_removed_digit = static_cast<uint8_t>(
|
|
RyuPowLogUtils::MulPow5divPow2(base2.mantissa_correct,
|
|
static_cast<uint32_t>(i + 1), j) %
|
|
10);
|
|
}
|
|
if (q <= 1) {
|
|
// {mantissa_out, mantissa_out_high, mantissa_out_low} is trailing zeros if
|
|
// {mantissa_correct,mantissa_high,mantissa_low} has at least q trailing 0
|
|
// bits.mantissa_correct = 4 * m2, so it always has at least two trailing 0 bits.
|
|
*mantissa_out_is_trailing_zeros = true;
|
|
if (accept_bounds) {
|
|
// mantissa_low = mantissa_correct - 1 - mantissa_low_shift, so it has 1
|
|
// trailing 0 bit iff mmShift == 1.
|
|
*mantissa_low_is_trailing_zeros = mantissa_low_shift == 1;
|
|
} else {
|
|
// mantissa_high = mantissa_correct + 2, so it always has at least one trailing
|
|
// 0 bit.
|
|
--base10->mantissa_high;
|
|
}
|
|
} else if (q < 31) {
|
|
*mantissa_out_is_trailing_zeros =
|
|
RyuPowLogUtils::MultipleOfPowerOf2(base2.mantissa_correct, q - 1);
|
|
}
|
|
}
|
|
return last_removed_digit;
|
|
}
|
|
|
|
/*
|
|
* \brief A varient of extended euclidean GCD algorithm.
|
|
*/
|
|
static UnsignedFloatBase10
|
|
ShortestRepresentation(bool mantissa_low_is_trailing_zeros,
|
|
bool mantissa_out_is_trailing_zeros,
|
|
uint8_t last_removed_digit, bool const accept_bounds,
|
|
MantissaInteval base10) noexcept(true) {
|
|
int32_t removed {0};
|
|
uint32_t output {0};
|
|
|
|
if (mantissa_low_is_trailing_zeros || mantissa_out_is_trailing_zeros) {
|
|
// General case, which happens rarely (~4.0%).
|
|
while (base10.mantissa_high / 10 > base10.mantissa_low / 10) {
|
|
mantissa_low_is_trailing_zeros &= base10.mantissa_low % 10 == 0;
|
|
mantissa_out_is_trailing_zeros &= last_removed_digit == 0;
|
|
last_removed_digit = static_cast<uint8_t>(base10.mantissa_correct % 10);
|
|
base10.mantissa_correct /= 10;
|
|
base10.mantissa_high /= 10;
|
|
base10.mantissa_low /= 10;
|
|
++removed;
|
|
}
|
|
|
|
if (mantissa_low_is_trailing_zeros) {
|
|
while (base10.mantissa_low % 10 == 0) {
|
|
mantissa_out_is_trailing_zeros &= last_removed_digit == 0;
|
|
last_removed_digit = static_cast<uint8_t>(base10.mantissa_correct % 10);
|
|
base10.mantissa_correct /= 10;
|
|
base10.mantissa_high /= 10;
|
|
base10.mantissa_low /= 10;
|
|
++removed;
|
|
}
|
|
}
|
|
|
|
if (mantissa_out_is_trailing_zeros && last_removed_digit == 5 &&
|
|
base10.mantissa_correct % 2 == 0) {
|
|
// Round even if the exact number is .....50..0.
|
|
last_removed_digit = 4;
|
|
}
|
|
// We need to take mantissa_out + 1 if mantissa_out is outside bounds or we need to
|
|
// round up.
|
|
output = base10.mantissa_correct +
|
|
((base10.mantissa_correct == base10.mantissa_low &&
|
|
(!accept_bounds || !mantissa_low_is_trailing_zeros)) ||
|
|
last_removed_digit >= 5);
|
|
} else {
|
|
// Specialized for the common case (~96.0%). Percentages below are
|
|
// relative to this. Loop iterations below (approximately): 0: 13.6%,
|
|
// 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
|
|
while (base10.mantissa_high / 10 > base10.mantissa_low / 10) {
|
|
last_removed_digit = static_cast<uint8_t>(base10.mantissa_correct % 10);
|
|
base10.mantissa_correct /= 10;
|
|
base10.mantissa_high /= 10;
|
|
base10.mantissa_low /= 10;
|
|
++removed;
|
|
}
|
|
|
|
// We need to take mantissa_out + 1 if mantissa_out is outside bounds or we need to
|
|
// round up.
|
|
output = base10.mantissa_correct +
|
|
(base10.mantissa_correct == base10.mantissa_low ||
|
|
last_removed_digit >= 5);
|
|
}
|
|
const int32_t exp = base10.exponent + removed;
|
|
|
|
UnsignedFloatBase10 fd;
|
|
fd.exponent = exp;
|
|
fd.mantissa = output;
|
|
return fd;
|
|
}
|
|
|
|
public:
|
|
static UnsignedFloatBase10 Binary2Decimal(UnsignedFloatBase2 const f) noexcept(true) {
|
|
MantissaInteval base2_range;
|
|
uint32_t mantissa_base2;
|
|
if (f.exponent == 0) {
|
|
// We subtract 2 so that the bounds computation has 2 additional bits.
|
|
base2_range.exponent = static_cast<int32_t>(1) -
|
|
static_cast<int32_t>(IEEE754::kFloatBias) -
|
|
static_cast<int32_t>(IEEE754::kFloatMantissaBits) -
|
|
static_cast<int32_t>(2);
|
|
static_assert(static_cast<int32_t>(1) -
|
|
static_cast<int32_t>(IEEE754::kFloatBias) -
|
|
static_cast<int32_t>(IEEE754::kFloatMantissaBits) -
|
|
static_cast<int32_t>(2) ==
|
|
-151,
|
|
"");
|
|
mantissa_base2 = f.mantissa;
|
|
} else {
|
|
base2_range.exponent = static_cast<int32_t>(f.exponent) - IEEE754::kFloatBias -
|
|
IEEE754::kFloatMantissaBits - 2;
|
|
mantissa_base2 = (1u << IEEE754::kFloatMantissaBits) | f.mantissa;
|
|
}
|
|
const bool even = (mantissa_base2 & 1) == 0;
|
|
const bool accept_bounds = even;
|
|
|
|
// Step 2: Determine the interval of valid decimal representations.
|
|
base2_range.mantissa_correct = 4 * mantissa_base2;
|
|
base2_range.mantissa_high = 4 * mantissa_base2 + 2;
|
|
// Implicit bool -> int conversion. True is 1, false is 0.
|
|
const uint32_t mantissa_low_shift = f.mantissa != 0 || f.exponent <= 1;
|
|
base2_range.mantissa_low = 4 * mantissa_base2 - 1 - mantissa_low_shift;
|
|
|
|
// Step 3: Convert to a decimal power base using 64-bit arithmetic.
|
|
MantissaInteval base10_range;
|
|
bool mantissa_low_is_trailing_zeros = false;
|
|
bool mantissa_out_is_trailing_zeros = false;
|
|
auto last_removed_digit = PowerBaseComputer::ToDecimalBase(
|
|
accept_bounds, mantissa_low_shift, base2_range, &base10_range,
|
|
&mantissa_low_is_trailing_zeros, &mantissa_out_is_trailing_zeros);
|
|
|
|
// Step 4: Find the shortest decimal representation in the interval of valid
|
|
// representations.
|
|
auto out = ShortestRepresentation(mantissa_low_is_trailing_zeros,
|
|
mantissa_out_is_trailing_zeros,
|
|
last_removed_digit,
|
|
accept_bounds, base10_range);
|
|
return out;
|
|
}
|
|
};
|
|
|
|
/*
|
|
* \brief Print the floating point number in base 10.
|
|
*/
|
|
class RyuPrinter {
|
|
private:
|
|
static inline uint32_t OutputLength(const uint32_t v) noexcept(true) {
|
|
// Function precondition: v is not a 10-digit number.
|
|
// (f2s: 9 digits are sufficient for round-tripping.)
|
|
// (d2fixed: We print 9-digit blocks.)
|
|
static_assert(100000000 == Tens(8), "");
|
|
assert(v < Tens(9));
|
|
if (v >= Tens(8)) {
|
|
return 9;
|
|
}
|
|
if (v >= Tens(7)) {
|
|
return 8;
|
|
}
|
|
if (v >= Tens(6)) {
|
|
return 7;
|
|
}
|
|
if (v >= Tens(5)) {
|
|
return 6;
|
|
}
|
|
if (v >= Tens(4)) {
|
|
return 5;
|
|
}
|
|
if (v >= Tens(3)) {
|
|
return 4;
|
|
}
|
|
if (v >= Tens(2)) {
|
|
return 3;
|
|
}
|
|
if (v >= Tens(1)) {
|
|
return 2;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
public:
|
|
static int32_t PrintBase10Float(UnsignedFloatBase10 v, const bool sign,
|
|
char *const result) noexcept(true) {
|
|
// Step 5: Print the decimal representation.
|
|
int index = 0;
|
|
if (sign) {
|
|
result[index++] = '-';
|
|
}
|
|
|
|
uint32_t output = v.mantissa;
|
|
const uint32_t out_length = OutputLength(output);
|
|
|
|
// Print the decimal digits.
|
|
// The following code is equivalent to:
|
|
// for (uint32_t i = 0; i < olength - 1; ++i) {
|
|
// const uint32_t c = output % 10; output /= 10;
|
|
// result[index + olength - i] = (char) ('0' + c);
|
|
// }
|
|
// result[index] = '0' + output % 10;
|
|
uint32_t i = 0;
|
|
while (output >= Tens(4)) {
|
|
const uint32_t c = output % Tens(4);
|
|
output /= Tens(4);
|
|
const uint32_t c0 = (c % 100) << 1;
|
|
const uint32_t c1 = (c / 100) << 1;
|
|
// This is used to speed up decimal digit generation by copying
|
|
// pairs of digits into the final output.
|
|
std::memcpy(result + index + out_length - i - 1, kItoaLut + c0, 2);
|
|
std::memcpy(result + index + out_length - i - 3, kItoaLut + c1, 2);
|
|
i += 4;
|
|
}
|
|
if (output >= 100) {
|
|
const uint32_t c = (output % 100) << 1;
|
|
output /= 100;
|
|
std::memcpy(result + index + out_length - i - 1, kItoaLut + c, 2);
|
|
i += 2;
|
|
}
|
|
if (output >= 10) {
|
|
const uint32_t c = output << 1;
|
|
// We can't use std::memcpy here: the decimal dot goes between these two
|
|
// digits.
|
|
result[index + out_length - i] = kItoaLut[c + 1];
|
|
result[index] = kItoaLut[c];
|
|
} else {
|
|
result[index] = static_cast<char>('0' + output);
|
|
}
|
|
|
|
// Print decimal point if needed.
|
|
if (out_length > 1) {
|
|
result[index + 1] = '.';
|
|
index += out_length + 1;
|
|
} else {
|
|
++index;
|
|
}
|
|
|
|
// Print the exponent.
|
|
result[index++] = 'E';
|
|
int32_t exp = v.exponent + static_cast<int32_t>(out_length) - 1;
|
|
if (exp < 0) {
|
|
result[index++] = '-';
|
|
exp = -exp;
|
|
}
|
|
|
|
if (exp >= 10) {
|
|
std::memcpy(result + index, kItoaLut + 2 * exp, 2);
|
|
index += 2;
|
|
} else {
|
|
result[index++] = static_cast<char>('0' + exp);
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
static int32_t PrintSpecialFloat(const bool sign, UnsignedFloatBase2 f,
|
|
char *const result) noexcept(true) {
|
|
if (f.mantissa) {
|
|
std::memcpy(result, u8"NaN", 3);
|
|
return 3;
|
|
}
|
|
if (sign) {
|
|
result[0] = '-';
|
|
}
|
|
if (f.exponent) {
|
|
std::memcpy(result + sign, u8"Infinity", 8);
|
|
return sign + 8;
|
|
}
|
|
std::memcpy(result + sign, u8"0E0", 3);
|
|
return sign + 3;
|
|
}
|
|
};
|
|
|
|
int32_t ToCharsFloatImpl(float f, char * const result) {
|
|
// Step 1: Decode the floating-point number, and unify normalized and
|
|
// subnormal cases.
|
|
UnsignedFloatBase2 uf32;
|
|
bool sign;
|
|
IEEE754::Decode(f, &uf32, &sign);
|
|
|
|
// Case distinction; exit early for the easy cases.
|
|
if (uf32.Infinite() || uf32.Zero()) {
|
|
return RyuPrinter::PrintSpecialFloat(sign, uf32, result);
|
|
}
|
|
|
|
const UnsignedFloatBase10 v = PowerBaseComputer::Binary2Decimal(uf32);
|
|
const auto index = RyuPrinter::PrintBase10Float(v, sign, result);
|
|
return index;
|
|
}
|
|
|
|
|
|
// ====================== Integer ==================
|
|
|
|
// This is an implementation for base 10 inspired by the one in libstdc++v3. The general
|
|
// scheme is by decomposing the value into multiple combination of base (which is 10) by
|
|
// mod, until the value is lesser than 10, then last char is just char '0' (ascii 48) plus
|
|
// that value. Other popular implementations can be found in RapidJson and libc++ (in
|
|
// llvm-project), which uses the same general work flow with the same look up table, but
|
|
// probably with better performance as they are more complicated.
|
|
void ItoaUnsignedImpl(char *first, uint32_t length, uint64_t value) {
|
|
uint32_t position = length - 1;
|
|
while (value >= Tens(2)) {
|
|
auto const num = (value % Tens(2)) * 2;
|
|
value /= Tens(2);
|
|
first[position] = kItoaLut[num + 1];
|
|
first[position - 1] = kItoaLut[num];
|
|
position -= 2;
|
|
}
|
|
if (value >= 10) {
|
|
auto const num = value * 2;
|
|
first[0] = kItoaLut[num];
|
|
first[1] = kItoaLut[num + 1];
|
|
} else {
|
|
first[0]= '0' + value;
|
|
}
|
|
}
|
|
|
|
constexpr uint32_t ShortestDigit10Impl(uint64_t value, uint32_t n) {
|
|
// Should trigger tail recursion optimization.
|
|
return value < 10 ? n :
|
|
(value < Tens(2) ? n + 1 :
|
|
(value < Tens(3) ? n + 2 :
|
|
(value < Tens(4) ? n + 3 :
|
|
ShortestDigit10Impl(value / Tens(4), n + 4))));
|
|
}
|
|
|
|
constexpr uint32_t ShortestDigit10(uint64_t value) {
|
|
return ShortestDigit10Impl(value, 1);
|
|
}
|
|
|
|
to_chars_result ToCharsUnsignedImpl(char *first, char *last,
|
|
uint64_t const value) {
|
|
const uint32_t output_len = ShortestDigit10(value);
|
|
to_chars_result ret;
|
|
if (XGBOOST_EXPECT(std::distance(first, last) == 0, false)) {
|
|
ret.ec = std::errc::value_too_large;
|
|
ret.ptr = last;
|
|
return ret;
|
|
}
|
|
|
|
ItoaUnsignedImpl(first, output_len, value);
|
|
ret.ptr = first + output_len;
|
|
ret.ec = std::errc();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The parsing is also part of ryu. As of writing, the implementation in ryu uses full
|
|
* double table. But here we optimize the table size with float table instead. The
|
|
* result is exactly the same.
|
|
*/
|
|
from_chars_result FromCharFloatImpl(const char *buffer, const int len,
|
|
float *result) {
|
|
if (len == 0) {
|
|
return {buffer, std::errc::invalid_argument};
|
|
}
|
|
int32_t m10digits = 0;
|
|
int32_t e10digits = 0;
|
|
int32_t dot_ind = len;
|
|
int32_t e_ind = len;
|
|
uint32_t mantissa_b10 = 0;
|
|
int32_t exp_b10 = 0;
|
|
bool signed_mantissa = false;
|
|
bool signed_exp = false;
|
|
int32_t i = 0;
|
|
if (buffer[i] == '-') {
|
|
signed_mantissa = true;
|
|
i++;
|
|
}
|
|
for (; i < len; i++) {
|
|
char c = buffer[i];
|
|
if (c == '.') {
|
|
if (dot_ind != len) {
|
|
return {buffer + i, std::errc::invalid_argument};
|
|
}
|
|
dot_ind = i;
|
|
continue;
|
|
}
|
|
if ((c < '0') || (c > '9')) {
|
|
break;
|
|
}
|
|
if (m10digits >= 9) {
|
|
return {buffer + i, std::errc::result_out_of_range};
|
|
}
|
|
mantissa_b10 = 10 * mantissa_b10 + (c - '0');
|
|
if (mantissa_b10 != 0) {
|
|
m10digits++;
|
|
}
|
|
}
|
|
|
|
if (i < len && ((buffer[i] == 'e') || (buffer[i] == 'E'))) {
|
|
e_ind = i;
|
|
i++;
|
|
if (i < len && ((buffer[i] == '-') || (buffer[i] == '+'))) {
|
|
signed_exp = buffer[i] == '-';
|
|
i++;
|
|
}
|
|
for (; i < len; i++) {
|
|
char c = buffer[i];
|
|
if ((c < '0') || (c > '9')) {
|
|
return {buffer + i, std::errc::invalid_argument};
|
|
}
|
|
if (e10digits > 3) {
|
|
return {buffer + i, std::errc::result_out_of_range};
|
|
}
|
|
exp_b10 = 10 * exp_b10 + (c - '0');
|
|
if (exp_b10 != 0) {
|
|
e10digits++;
|
|
}
|
|
}
|
|
}
|
|
if (i < len) {
|
|
return {buffer + i, std::errc::invalid_argument};
|
|
}
|
|
if (signed_exp) {
|
|
exp_b10 = -exp_b10;
|
|
}
|
|
exp_b10 -= dot_ind < e_ind ? e_ind - dot_ind - 1 : 0;
|
|
if (mantissa_b10 == 0) {
|
|
*result = signed_mantissa ? -0.0f : 0.0f;
|
|
return {};
|
|
}
|
|
|
|
if ((m10digits + exp_b10 <= -46) || (mantissa_b10 == 0)) {
|
|
// Number is less than 1e-46, which should be rounded down to 0; return
|
|
// +/-0.0.
|
|
uint32_t ieee =
|
|
(static_cast<uint32_t>(signed_mantissa))
|
|
<< (IEEE754::kFloatExponentBits + IEEE754::kFloatMantissaBits);
|
|
*result = BitCast<float>(ieee);
|
|
return {};
|
|
}
|
|
if (m10digits + exp_b10 >= 40) {
|
|
// Number is larger than 1e+39, which should be rounded to +/-Infinity.
|
|
*result = IEEE754::Infinity(signed_mantissa);
|
|
return {};
|
|
}
|
|
|
|
// Convert to binary float m2 * 2^e2, while retaining information about
|
|
// whether the conversion was exact (trailingZeros).
|
|
int32_t exp_b2;
|
|
uint32_t mantissa_b2;
|
|
bool trailing_zeros;
|
|
if (exp_b10 >= 0) {
|
|
// The length of m * 10^e in bits is:
|
|
// log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 *
|
|
// log2(5)
|
|
//
|
|
// We want to compute the IEEE754::kFloatMantissaBits + 1 top-most bits (+1 for the
|
|
// implicit leading one in IEEE format). We therefore choose a binary output
|
|
// exponent of
|
|
// log2(m10 * 10^e10) - (IEEE754::kFloatMantissaBits + 1).
|
|
//
|
|
// We use floor(log2(5^e10)) so that we get at least this many bits; better
|
|
// to have an additional bit than to not have enough bits.
|
|
exp_b2 = RyuPowLogUtils::FloorLog2(mantissa_b10) + exp_b10 +
|
|
RyuPowLogUtils::Log2Pow5(exp_b10) -
|
|
(IEEE754::kFloatMantissaBits + 1);
|
|
|
|
// We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)].
|
|
// To that end, we use the RyuPowLogUtils::kFloatPow5Bitcount table.
|
|
int j = exp_b2 - exp_b10 - RyuPowLogUtils::CeilLog2Pow5(exp_b10) +
|
|
RyuPowLogUtils::kFloatPow5Bitcount;
|
|
assert(j >= 0);
|
|
mantissa_b2 = RyuPowLogUtils::MulPow5divPow2(mantissa_b10, exp_b10, j);
|
|
|
|
// We also compute if the result is exact, i.e.,
|
|
// [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2.
|
|
// This can only be the case if 2^e2 divides m10 * 10^e10, which in turn
|
|
// requires that the largest power of 2 that divides m10 + e10 is greater
|
|
// than e2. If e2 is less than e10, then the result must be exact. Otherwise
|
|
// we use the existing multipleOfPowerOf2 function.
|
|
trailing_zeros =
|
|
exp_b2 < exp_b10 ||
|
|
(exp_b2 - exp_b10 < 32 &&
|
|
RyuPowLogUtils::MultipleOfPowerOf2(mantissa_b10, exp_b2 - exp_b10));
|
|
} else {
|
|
exp_b2 = RyuPowLogUtils::FloorLog2(mantissa_b10) + exp_b10 -
|
|
RyuPowLogUtils::CeilLog2Pow5(-exp_b10) -
|
|
(IEEE754::kFloatMantissaBits + 1);
|
|
|
|
// We now compute [m10 * 10^e10 / 2^e2] = [m10 / (5^(-e10) 2^(e2-e10))].
|
|
int j = exp_b2 - exp_b10 + RyuPowLogUtils::CeilLog2Pow5(-exp_b10) - 1 +
|
|
RyuPowLogUtils::kFloatPow5InvBitcount;
|
|
mantissa_b2 = RyuPowLogUtils::MulPow5InvDivPow2(mantissa_b10, -exp_b10, j);
|
|
|
|
// We also compute if the result is exact, i.e.,
|
|
// [m10 / (5^(-e10) 2^(e2-e10))] == m10 / (5^(-e10) 2^(e2-e10))
|
|
//
|
|
// If e2-e10 >= 0, we need to check whether (5^(-e10) 2^(e2-e10)) divides
|
|
// m10, which is the case iff pow5(m10) >= -e10 AND pow2(m10) >= e2-e10.
|
|
//
|
|
// If e2-e10 < 0, we have actually computed [m10 * 2^(e10 e2) / 5^(-e10)]
|
|
// above, and we need to check whether 5^(-e10) divides (m10 * 2^(e10-e2)),
|
|
// which is the case iff pow5(m10 * 2^(e10-e2)) = pow5(m10) >= -e10.
|
|
trailing_zeros =
|
|
(exp_b2 < exp_b10 ||
|
|
(exp_b2 - exp_b10 < 32 && RyuPowLogUtils::MultipleOfPowerOf2(
|
|
mantissa_b10, exp_b2 - exp_b10))) &&
|
|
RyuPowLogUtils::MultipleOfPowerOf5(mantissa_b10, -exp_b10);
|
|
}
|
|
|
|
// Compute the final IEEE exponent.
|
|
uint32_t f_e2 =
|
|
std::max(static_cast<int32_t>(0),
|
|
static_cast<int32_t>(exp_b2 + IEEE754::kFloatBias +
|
|
RyuPowLogUtils::FloorLog2(mantissa_b2)));
|
|
|
|
if (f_e2 > 0xfe) {
|
|
// Final IEEE exponent is larger than the maximum representable; return
|
|
// +/-Infinity.
|
|
*result = IEEE754::Infinity(signed_mantissa);
|
|
return {};
|
|
}
|
|
|
|
// We need to figure out how much we need to shift m2. The tricky part is that
|
|
// we need to take the final IEEE exponent into account, so we need to reverse
|
|
// the bias and also special-case the value 0.
|
|
int32_t shift = (f_e2 == 0 ? 1 : f_e2) - exp_b2 - IEEE754::kFloatBias -
|
|
IEEE754::kFloatMantissaBits;
|
|
assert(shift >= 0);
|
|
|
|
// We need to round up if the exact value is more than 0.5 above the value we
|
|
// computed. That's equivalent to checking if the last removed bit was 1 and
|
|
// either the value was not just trailing zeros or the result would otherwise
|
|
// be odd.
|
|
//
|
|
// We need to update trailingZeros given that we have the exact output
|
|
// exponent ieee_e2 now.
|
|
trailing_zeros &= (mantissa_b2 & ((1u << (shift - 1)) - 1)) == 0;
|
|
uint32_t lastRemovedBit = (mantissa_b2 >> (shift - 1)) & 1;
|
|
bool roundup = (lastRemovedBit != 0) &&
|
|
(!trailing_zeros || (((mantissa_b2 >> shift) & 1) != 0));
|
|
|
|
uint32_t f_m2 = (mantissa_b2 >> shift) + roundup;
|
|
assert(f_m2 <= (1u << (IEEE754::kFloatMantissaBits + 1)));
|
|
f_m2 &= (1u << IEEE754::kFloatMantissaBits) - 1;
|
|
if (f_m2 == 0 && roundup) {
|
|
// Rounding up may overflow the mantissa.
|
|
// In this case we move a trailing zero of the mantissa into the exponent.
|
|
// Due to how the IEEE represents +/-Infinity, we don't need to check for
|
|
// overflow here.
|
|
f_e2++;
|
|
}
|
|
*result = IEEE754::Encode({f_m2, f_e2}, signed_mantissa);
|
|
return {};
|
|
}
|
|
} // namespace detail
|
|
} // namespace xgboost
|