xgboost/tests/cpp/common/test_column_matrix.cc
Jiaming Yuan f05a23b41c
Use weakref instead of id for DataIter cache. (#9445)
- Fix case where Python reuses id from freed objects.
- Small optimization to column matrix with QDM by using `realloc` instead of copying data.
2023-08-10 00:40:06 +08:00

150 lines
6.3 KiB
C++

/**
* Copyright 2018-2023 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/base.h> // for bst_bin_t
#include <xgboost/context.h> // for Context
#include <xgboost/data.h> // for BatchIterator, BatchSet, DMatrix, Met...
#include <cstddef> // for size_t
#include <cstdint> // for int32_t, uint16_t, uint8_t
#include <limits> // for numeric_limits
#include <memory> // for shared_ptr, __shared_ptr_access, allo...
#include <type_traits> // for remove_reference_t
#include "../../../src/common/column_matrix.h" // for ColumnMatrix, Column, DenseColumnIter
#include "../../../src/common/hist_util.h" // for DispatchBinType, BinTypeSize, Index
#include "../../../src/common/ref_resource_view.h" // for RefResourceView
#include "../../../src/data/gradient_index.h" // for GHistIndexMatrix
#include "../../../src/data/iterative_dmatrix.h" // for IterativeDMatrix
#include "../../../src/tree/param.h" // for TrainParam
#include "../helpers.h" // for RandomDataGenerator, NumpyArrayIterFo...
namespace xgboost::common {
TEST(ColumnMatrix, Basic) {
int32_t max_num_bins[] = {static_cast<int32_t>(std::numeric_limits<uint8_t>::max()) + 1,
static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 1,
static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 2};
Context ctx;
BinTypeSize last{kUint8BinsTypeSize};
for (int32_t max_num_bin : max_num_bins) {
auto dmat = RandomDataGenerator(100, 10, 0.0).GenerateDMatrix();
auto sparse_thresh = 0.2;
GHistIndexMatrix gmat{&ctx, dmat.get(), max_num_bin, sparse_thresh, false};
ColumnMatrix column_matrix;
for (auto const& page : dmat->GetBatches<SparsePage>()) {
column_matrix.InitFromSparse(page, gmat, sparse_thresh, ctx.Threads());
}
ASSERT_GE(column_matrix.GetTypeSize(), last);
ASSERT_LE(column_matrix.GetTypeSize(), kUint32BinsTypeSize);
last = column_matrix.GetTypeSize();
ASSERT_FALSE(column_matrix.AnyMissing());
for (auto i = 0ull; i < dmat->Info().num_row_; i++) {
for (auto j = 0ull; j < dmat->Info().num_col_; j++) {
DispatchBinType(column_matrix.GetTypeSize(), [&](auto dtype) {
using T = decltype(dtype);
auto col = column_matrix.DenseColumn<T, false>(j);
ASSERT_EQ(gmat.index[i * dmat->Info().num_col_ + j], col.GetGlobalBinIdx(i));
});
}
}
}
}
template <typename BinIdxType>
void CheckSparseColumn(SparseColumnIter<BinIdxType>* p_col, const GHistIndexMatrix& gmat) {
auto& col = *p_col;
size_t n_samples = gmat.row_ptr.size() - 1;
ASSERT_EQ(col.Size(), gmat.index.Size());
for (auto i = 0ull; i < col.Size(); i++) {
ASSERT_EQ(gmat.index[gmat.row_ptr[col.GetRowIdx(i)]], col.GetGlobalBinIdx(i));
}
for (auto i = 0ull; i < n_samples; i++) {
if (col[i] == Column<BinIdxType>::kMissingId) {
auto beg = gmat.row_ptr[i];
auto end = gmat.row_ptr[i + 1];
ASSERT_EQ(end - beg, 0);
}
}
}
TEST(ColumnMatrix, SparseColumn) {
int32_t max_num_bins[] = {static_cast<int32_t>(std::numeric_limits<uint8_t>::max()) + 1,
static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 1,
static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 2};
Context ctx;
for (int32_t max_num_bin : max_num_bins) {
auto dmat = RandomDataGenerator(100, 1, 0.85).GenerateDMatrix();
GHistIndexMatrix gmat{&ctx, dmat.get(), max_num_bin, 0.5f, false};
ColumnMatrix column_matrix;
for (auto const& page : dmat->GetBatches<SparsePage>()) {
column_matrix.InitFromSparse(page, gmat, 1.0, ctx.Threads());
}
common::DispatchBinType(column_matrix.GetTypeSize(), [&](auto dtype) {
using T = decltype(dtype);
auto col = column_matrix.SparseColumn<T>(0, 0);
CheckSparseColumn(&col, gmat);
});
}
}
template <typename BinIdxType>
void CheckColumWithMissingValue(const DenseColumnIter<BinIdxType, true>& col,
const GHistIndexMatrix& gmat) {
for (auto i = 0ull; i < col.Size(); i++) {
if (col.IsMissing(i)) {
continue;
}
EXPECT_EQ(gmat.index[gmat.row_ptr[i]], col.GetGlobalBinIdx(i));
}
}
TEST(ColumnMatrix, DenseColumnWithMissing) {
int32_t max_num_bins[] = {static_cast<int32_t>(std::numeric_limits<uint8_t>::max()) + 1,
static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 1,
static_cast<int32_t>(std::numeric_limits<uint16_t>::max()) + 2};
Context ctx;
for (int32_t max_num_bin : max_num_bins) {
auto dmat = RandomDataGenerator(100, 1, 0.5).GenerateDMatrix();
GHistIndexMatrix gmat(&ctx, dmat.get(), max_num_bin, 0.2, false);
ColumnMatrix column_matrix;
for (auto const& page : dmat->GetBatches<SparsePage>()) {
column_matrix.InitFromSparse(page, gmat, 0.2, ctx.Threads());
}
ASSERT_TRUE(column_matrix.AnyMissing());
DispatchBinType(column_matrix.GetTypeSize(), [&](auto dtype) {
using T = decltype(dtype);
auto col = column_matrix.DenseColumn<T, true>(0);
CheckColumWithMissingValue(col, gmat);
});
}
}
TEST(ColumnMatrix, GrowMissing) {
float sparsity = 0.5;
NumpyArrayIterForTest iter(sparsity);
auto n_threads = 0;
bst_bin_t n_bins = 16;
BatchParam batch{n_bins, tree::TrainParam::DftSparseThreshold()};
Context ctx;
auto m = std::make_shared<data::IterativeDMatrix>(&iter, iter.Proxy(), nullptr, Reset, Next,
std::numeric_limits<float>::quiet_NaN(),
n_threads, n_bins);
for (auto const& page : m->GetBatches<GHistIndexMatrix>(&ctx, batch)) {
auto const& column_matrix = page.Transpose();
auto const& missing = column_matrix.Missing();
auto n = NumpyArrayIterForTest::Rows() * NumpyArrayIterForTest::Cols();
auto expected = std::remove_reference_t<decltype(missing)>::BitFieldT::ComputeStorageSize(n);
auto got = missing.storage.size();
ASSERT_EQ(expected, got);
DispatchBinType(column_matrix.GetTypeSize(), [&](auto dtype) {
using T = decltype(dtype);
auto col = column_matrix.DenseColumn<T, true>(0);
CheckColumWithMissingValue(col, page);
});
}
}
} // namespace xgboost::common