xgboost/tests/python/test_predict.py
Jiaming Yuan 37ad60fe25
Enforce input data is not object. (#6927)
* Check for object data type.
* Allow strided arrays with greater underlying buffer size.
2021-05-02 00:09:01 +08:00

220 lines
7.0 KiB
Python

'''Tests for running inplace prediction.'''
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from scipy import sparse
import pytest
import pandas as pd
import testing as tm
import xgboost as xgb
def run_threaded_predict(X, rows, predict_func):
results = []
per_thread = 20
with ThreadPoolExecutor(max_workers=10) as e:
for i in range(0, rows, int(rows / per_thread)):
if hasattr(X, 'iloc'):
predictor = X.iloc[i:i+per_thread, :]
else:
predictor = X[i:i+per_thread, ...]
f = e.submit(predict_func, predictor)
results.append(f)
for f in results:
assert f.result()
def verify_leaf_output(leaf: np.ndarray, num_parallel_tree: int):
for i in range(leaf.shape[0]): # n_samples
for j in range(leaf.shape[1]): # n_rounds
for k in range(leaf.shape[2]): # n_classes
tree_group = leaf[i, j, k, :]
assert tree_group.shape[0] == num_parallel_tree
# No sampling, all trees within forest are the same
assert np.all(tree_group == tree_group[0])
def run_predict_leaf(predictor):
rows = 100
cols = 4
classes = 5
num_parallel_tree = 4
num_boost_round = 10
rng = np.random.RandomState(1994)
X = rng.randn(rows, cols)
y = rng.randint(low=0, high=classes, size=rows)
m = xgb.DMatrix(X, y)
booster = xgb.train(
{
"num_parallel_tree": num_parallel_tree,
"num_class": classes,
"predictor": predictor,
"tree_method": "hist",
},
m,
num_boost_round=num_boost_round,
)
empty = xgb.DMatrix(np.ones(shape=(0, cols)))
empty_leaf = booster.predict(empty, pred_leaf=True)
assert empty_leaf.shape[0] == 0
leaf = booster.predict(m, pred_leaf=True, strict_shape=True)
assert leaf.shape[0] == rows
assert leaf.shape[1] == num_boost_round
assert leaf.shape[2] == classes
assert leaf.shape[3] == num_parallel_tree
verify_leaf_output(leaf, num_parallel_tree)
ntree_limit = 2
sliced = booster.predict(
m, pred_leaf=True, ntree_limit=num_parallel_tree * ntree_limit, strict_shape=True
)
first = sliced[0, ...]
assert np.prod(first.shape) == classes * num_parallel_tree * ntree_limit
# When there's only 1 tree, the output is a 1 dim vector
booster = xgb.train({"tree_method": "hist"}, num_boost_round=1, dtrain=m)
assert booster.predict(m, pred_leaf=True).shape == (rows, )
return leaf
def test_predict_leaf():
run_predict_leaf('cpu_predictor')
def test_predict_shape():
from sklearn.datasets import load_boston
X, y = load_boston(return_X_y=True)
reg = xgb.XGBRegressor(n_estimators=1)
reg.fit(X, y)
predt = reg.get_booster().predict(xgb.DMatrix(X), strict_shape=True)
assert len(predt.shape) == 2
assert predt.shape[0] == X.shape[0]
assert predt.shape[1] == 1
contrib = reg.get_booster().predict(
xgb.DMatrix(X), pred_contribs=True, strict_shape=True
)
assert len(contrib.shape) == 3
assert contrib.shape[1] == 1
contrib = reg.get_booster().predict(
xgb.DMatrix(X), pred_contribs=True, approx_contribs=True
)
assert len(contrib.shape) == 2
assert contrib.shape[1] == X.shape[1] + 1
interaction = reg.get_booster().predict(
xgb.DMatrix(X), pred_interactions=True, approx_contribs=True
)
assert len(interaction.shape) == 3
assert interaction.shape[1] == X.shape[1] + 1
assert interaction.shape[2] == X.shape[1] + 1
interaction = reg.get_booster().predict(
xgb.DMatrix(X), pred_interactions=True, approx_contribs=True, strict_shape=True
)
assert len(interaction.shape) == 4
assert interaction.shape[1] == 1
assert interaction.shape[2] == X.shape[1] + 1
assert interaction.shape[3] == X.shape[1] + 1
class TestInplacePredict:
'''Tests for running inplace prediction'''
@classmethod
def setup_class(cls):
cls.rows = 1000
cls.cols = 10
cls.missing = 11 # set to integer for testing
cls.rng = np.random.RandomState(1994)
cls.X = cls.rng.randn(cls.rows, cls.cols)
missing_idx = [i for i in range(0, cls.cols, 4)]
cls.X[:, missing_idx] = cls.missing # set to be missing
cls.y = cls.rng.randn(cls.rows)
dtrain = xgb.DMatrix(cls.X, cls.y)
cls.test = xgb.DMatrix(cls.X[:10, ...], missing=cls.missing)
cls.booster = xgb.train({'tree_method': 'hist'}, dtrain, num_boost_round=10)
def test_predict(self):
booster = self.booster
X = self.X
test = self.test
predt_from_array = booster.inplace_predict(X[:10, ...], missing=self.missing)
predt_from_dmatrix = booster.predict(test)
X_obj = X.copy().astype(object)
assert X_obj.dtype.hasobject is True
assert X.dtype.hasobject is False
np.testing.assert_allclose(
booster.inplace_predict(X_obj), booster.inplace_predict(X)
)
np.testing.assert_allclose(predt_from_dmatrix, predt_from_array)
predt_from_array = booster.inplace_predict(
X[:10, ...], iteration_range=(0, 4), missing=self.missing
)
predt_from_dmatrix = booster.predict(test, ntree_limit=4)
np.testing.assert_allclose(predt_from_dmatrix, predt_from_array)
def predict_dense(x):
inplace_predt = booster.inplace_predict(x)
d = xgb.DMatrix(x)
copied_predt = booster.predict(d)
return np.all(copied_predt == inplace_predt)
for i in range(10):
run_threaded_predict(X, self.rows, predict_dense)
def predict_csr(x):
inplace_predt = booster.inplace_predict(sparse.csr_matrix(x))
d = xgb.DMatrix(x)
copied_predt = booster.predict(d)
return np.all(copied_predt == inplace_predt)
for i in range(10):
run_threaded_predict(X, self.rows, predict_csr)
@pytest.mark.skipif(**tm.no_pandas())
def test_predict_pd(self):
X = self.X
# construct it in column major style
df = pd.DataFrame({str(i): X[:, i] for i in range(X.shape[1])})
booster = self.booster
df_predt = booster.inplace_predict(df)
arr_predt = booster.inplace_predict(X)
dmat_predt = booster.predict(xgb.DMatrix(X))
X = df.values
X = np.asfortranarray(X)
fort_predt = booster.inplace_predict(X)
np.testing.assert_allclose(dmat_predt, arr_predt)
np.testing.assert_allclose(df_predt, arr_predt)
np.testing.assert_allclose(fort_predt, arr_predt)
def test_base_margin(self):
booster = self.booster
base_margin = self.rng.randn(self.rows)
from_inplace = booster.inplace_predict(data=self.X, base_margin=base_margin)
dtrain = xgb.DMatrix(self.X, self.y, base_margin=base_margin)
from_dmatrix = booster.predict(dtrain)
np.testing.assert_allclose(from_dmatrix, from_inplace)