xgboost/tests/python/generate_models.py
Jiaming Yuan cf70864fa3
Move Python testing utilities into xgboost module. (#8379)
- Add typehints.
- Fixes for pylint.

Co-authored-by: Hyunsu Philip Cho <chohyu01@cs.washington.edu>
2022-10-26 16:56:11 +08:00

153 lines
4.9 KiB
Python

import os
import numpy as np
import xgboost
kRounds = 2
kRows = 1000
kCols = 4
kForests = 2
kMaxDepth = 2
kClasses = 3
X = np.random.randn(kRows, kCols)
w = np.random.uniform(size=kRows)
version = xgboost.__version__
np.random.seed(1994)
target_dir = 'models'
def booster_bin(model):
return os.path.join(target_dir,
'xgboost-' + version + '.' + model + '.bin')
def booster_json(model):
return os.path.join(target_dir,
'xgboost-' + version + '.' + model + '.json')
def skl_bin(model):
return os.path.join(target_dir,
'xgboost_scikit-' + version + '.' + model + '.bin')
def skl_json(model):
return os.path.join(target_dir,
'xgboost_scikit-' + version + '.' + model + '.json')
def generate_regression_model():
print('Regression')
y = np.random.randn(kRows)
data = xgboost.DMatrix(X, label=y, weight=w)
booster = xgboost.train({'tree_method': 'hist',
'num_parallel_tree': kForests,
'max_depth': kMaxDepth},
num_boost_round=kRounds, dtrain=data)
booster.save_model(booster_bin('reg'))
booster.save_model(booster_json('reg'))
reg = xgboost.XGBRegressor(tree_method='hist',
num_parallel_tree=kForests,
max_depth=kMaxDepth,
n_estimators=kRounds)
reg.fit(X, y, w)
reg.save_model(skl_bin('reg'))
reg.save_model(skl_json('reg'))
def generate_logistic_model():
print('Logistic')
y = np.random.randint(0, 2, size=kRows)
assert y.max() == 1 and y.min() == 0
for objective, name in [('binary:logistic', 'logit'), ('binary:logitraw', 'logitraw')]:
data = xgboost.DMatrix(X, label=y, weight=w)
booster = xgboost.train({'tree_method': 'hist',
'num_parallel_tree': kForests,
'max_depth': kMaxDepth,
'objective': objective},
num_boost_round=kRounds, dtrain=data)
booster.save_model(booster_bin(name))
booster.save_model(booster_json(name))
reg = xgboost.XGBClassifier(tree_method='hist',
num_parallel_tree=kForests,
max_depth=kMaxDepth,
n_estimators=kRounds,
objective=objective)
reg.fit(X, y, w)
reg.save_model(skl_bin(name))
reg.save_model(skl_json(name))
def generate_classification_model():
print('Classification')
y = np.random.randint(0, kClasses, size=kRows)
data = xgboost.DMatrix(X, label=y, weight=w)
booster = xgboost.train({'num_class': kClasses,
'tree_method': 'hist',
'num_parallel_tree': kForests,
'max_depth': kMaxDepth},
num_boost_round=kRounds, dtrain=data)
booster.save_model(booster_bin('cls'))
booster.save_model(booster_json('cls'))
cls = xgboost.XGBClassifier(tree_method='hist',
num_parallel_tree=kForests,
max_depth=kMaxDepth,
n_estimators=kRounds)
cls.fit(X, y, w)
cls.save_model(skl_bin('cls'))
cls.save_model(skl_json('cls'))
def generate_ranking_model():
print('Learning to Rank')
y = np.random.randint(5, size=kRows)
w = np.random.uniform(size=20)
g = np.repeat(50, 20)
data = xgboost.DMatrix(X, y, weight=w)
data.set_group(g)
booster = xgboost.train({'objective': 'rank:ndcg',
'num_parallel_tree': kForests,
'tree_method': 'hist',
'max_depth': kMaxDepth},
num_boost_round=kRounds,
dtrain=data)
booster.save_model(booster_bin('ltr'))
booster.save_model(booster_json('ltr'))
ranker = xgboost.sklearn.XGBRanker(n_estimators=kRounds,
tree_method='hist',
objective='rank:ndcg',
max_depth=kMaxDepth,
num_parallel_tree=kForests)
ranker.fit(X, y, g, sample_weight=w)
ranker.save_model(skl_bin('ltr'))
ranker.save_model(skl_json('ltr'))
def write_versions():
versions = {'numpy': np.__version__,
'xgboost': version}
with open(os.path.join(target_dir, 'version'), 'w') as fd:
fd.write(str(versions))
if __name__ == '__main__':
if not os.path.exists(target_dir):
os.mkdir(target_dir)
generate_regression_model()
generate_logistic_model()
generate_classification_model()
generate_ranking_model()
write_versions()