xgboost/demo/rmm_plugin/rmm_singlegpu.py
Philip Hyunsu Cho 366f3cb9d8
Add use_rmm flag to global configuration (#6656)
* Ensure RMM is 0.18 or later

* Add use_rmm flag to global configuration

* Modify XGBCachingDeviceAllocatorImpl to skip CUB when use_rmm=True

* Update the demo

* [CI] Pin NumPy to 1.19.4, since NumPy 1.19.5 doesn't work with latest Shap
2021-03-09 14:53:05 -08:00

17 lines
610 B
Python

import xgboost as xgb
import rmm
from sklearn.datasets import make_classification
# Initialize RMM pool allocator
rmm.reinitialize(pool_allocator=True)
# Inform XGBoost that RMM is used for GPU memory allocation
xgb.set_config(use_rmm=True)
X, y = make_classification(n_samples=10000, n_informative=5, n_classes=3)
dtrain = xgb.DMatrix(X, label=y)
params = {'max_depth': 8, 'eta': 0.01, 'objective': 'multi:softprob', 'num_class': 3,
'tree_method': 'gpu_hist'}
# XGBoost will automatically use the RMM pool allocator
bst = xgb.train(params, dtrain, num_boost_round=100, evals=[(dtrain, 'train')])