xgboost/tests/cpp/tree/test_prune.cc
Jiaming Yuan 6deaec8027
Pass obj info by reference instead of by value. (#8889)
- Pass obj info into tree updater as const pointer.

This way we don't have to initialize the learner model param before configuring gbm, hence
breaking up the dependency of configurations.
2023-03-11 01:38:28 +08:00

93 lines
3.0 KiB
C++

/**
* Copyright 2018-2023 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/data.h>
#include <xgboost/host_device_vector.h>
#include <xgboost/learner.h>
#include <xgboost/tree_updater.h>
#include <memory>
#include <string>
#include <vector>
#include "../../../src/tree/param.h" // for TrainParam
#include "../helpers.h"
namespace xgboost::tree {
TEST(Updater, Prune) {
int constexpr kCols = 16;
std::vector<std::pair<std::string, std::string>> cfg;
cfg.emplace_back("num_feature", std::to_string(kCols));
cfg.emplace_back("min_split_loss", "10");
// These data are just place holders.
HostDeviceVector<GradientPair> gpair =
{ {0.50f, 0.25f}, {0.50f, 0.25f}, {0.50f, 0.25f}, {0.50f, 0.25f},
{0.25f, 0.24f}, {0.25f, 0.24f}, {0.25f, 0.24f}, {0.25f, 0.24f} };
std::shared_ptr<DMatrix> p_dmat {
RandomDataGenerator{32, 10, 0}.GenerateDMatrix() };
auto ctx = CreateEmptyGenericParam(GPUIDX);
// prepare tree
RegTree tree = RegTree();
tree.param.UpdateAllowUnknown(cfg);
std::vector<RegTree*> trees {&tree};
// prepare pruner
TrainParam param;
param.UpdateAllowUnknown(cfg);
ObjInfo task{ObjInfo::kRegression};
std::unique_ptr<TreeUpdater> pruner(TreeUpdater::Create("prune", &ctx, &task));
// loss_chg < min_split_loss;
std::vector<HostDeviceVector<bst_node_t>> position(trees.size());
tree.ExpandNode(0, 0, 0, true, 0.0f, 0.3f, 0.4f, 0.0f, 0.0f,
/*left_sum=*/0.0f, /*right_sum=*/0.0f);
pruner->Update(&param, &gpair, p_dmat.get(), position, trees);
ASSERT_EQ(tree.NumExtraNodes(), 0);
// loss_chg > min_split_loss;
tree.ExpandNode(0, 0, 0, true, 0.0f, 0.3f, 0.4f, 11.0f, 0.0f,
/*left_sum=*/0.0f, /*right_sum=*/0.0f);
pruner->Update(&param, &gpair, p_dmat.get(), position, trees);
ASSERT_EQ(tree.NumExtraNodes(), 2);
// loss_chg == min_split_loss;
tree.Stat(0).loss_chg = 10;
pruner->Update(&param, &gpair, p_dmat.get(), position, trees);
ASSERT_EQ(tree.NumExtraNodes(), 2);
// Test depth
// loss_chg > min_split_loss
tree.ExpandNode(tree[0].LeftChild(),
0, 0.5f, true, 0.3, 0.4, 0.5,
/*loss_chg=*/18.0f, 0.0f,
/*left_sum=*/0.0f, /*right_sum=*/0.0f);
tree.ExpandNode(tree[0].RightChild(),
0, 0.5f, true, 0.3, 0.4, 0.5,
/*loss_chg=*/19.0f, 0.0f,
/*left_sum=*/0.0f, /*right_sum=*/0.0f);
cfg.emplace_back("max_depth", "1");
param.UpdateAllowUnknown(cfg);
pruner->Update(&param, &gpair, p_dmat.get(), position, trees);
ASSERT_EQ(tree.NumExtraNodes(), 2);
tree.ExpandNode(tree[0].LeftChild(),
0, 0.5f, true, 0.3, 0.4, 0.5,
/*loss_chg=*/18.0f, 0.0f,
/*left_sum=*/0.0f, /*right_sum=*/0.0f);
cfg.emplace_back("min_split_loss", "0");
param.UpdateAllowUnknown(cfg);
pruner->Update(&param, &gpair, p_dmat.get(), position, trees);
ASSERT_EQ(tree.NumExtraNodes(), 2);
}
} // namespace xgboost::tree