xgboost/tests/cpp/tree/test_histmaker.cc

120 lines
4.0 KiB
C++

/**
* Copyright 2019-2023 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/tree_model.h>
#include <xgboost/tree_updater.h>
#include "../../../src/tree/param.h" // for TrainParam
#include "../helpers.h"
namespace xgboost::tree {
std::shared_ptr<DMatrix> GenerateDMatrix(std::size_t rows, std::size_t cols,
bool categorical = false) {
if (categorical) {
std::vector<FeatureType> ft(cols);
for (size_t i = 0; i < ft.size(); ++i) {
ft[i] = (i % 3 == 0) ? FeatureType::kNumerical : FeatureType::kCategorical;
}
return RandomDataGenerator(rows, cols, 0.6f).Seed(3).Type(ft).MaxCategory(17).GenerateDMatrix();
} else {
return RandomDataGenerator{rows, cols, 0.6f}.Seed(3).GenerateDMatrix();
}
}
TEST(GrowHistMaker, InteractionConstraint) {
auto constexpr kRows = 32;
auto constexpr kCols = 16;
auto p_dmat = GenerateDMatrix(kRows, kCols);
auto p_gradients = GenerateGradients(kRows);
Context ctx;
ObjInfo task{ObjInfo::kRegression};
{
// With constraints
RegTree tree{1, kCols};
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
TrainParam param;
param.UpdateAllowUnknown(
Args{{"interaction_constraints", "[[0, 1]]"}, {"num_feature", std::to_string(kCols)}});
std::vector<HostDeviceVector<bst_node_t>> position(1);
updater->Update(&param, p_gradients.get(), p_dmat.get(), position, {&tree});
ASSERT_EQ(tree.NumExtraNodes(), 4);
ASSERT_EQ(tree[0].SplitIndex(), 1);
ASSERT_EQ(tree[tree[0].LeftChild()].SplitIndex(), 0);
ASSERT_EQ(tree[tree[0].RightChild()].SplitIndex(), 0);
}
{
// Without constraints
RegTree tree{1u, kCols};
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
TrainParam param;
param.Init(Args{});
updater->Update(&param, p_gradients.get(), p_dmat.get(), position, {&tree});
ASSERT_EQ(tree.NumExtraNodes(), 10);
ASSERT_EQ(tree[0].SplitIndex(), 1);
ASSERT_NE(tree[tree[0].LeftChild()].SplitIndex(), 0);
ASSERT_NE(tree[tree[0].RightChild()].SplitIndex(), 0);
}
}
namespace {
void VerifyColumnSplit(int32_t rows, bst_feature_t cols, bool categorical,
RegTree const& expected_tree) {
auto p_dmat = GenerateDMatrix(rows, cols, categorical);
auto p_gradients = GenerateGradients(rows);
Context ctx;
ObjInfo task{ObjInfo::kRegression};
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
std::unique_ptr<DMatrix> sliced{
p_dmat->SliceCol(collective::GetWorldSize(), collective::GetRank())};
RegTree tree{1u, cols};
TrainParam param;
param.Init(Args{});
updater->Update(&param, p_gradients.get(), sliced.get(), position, {&tree});
Json json{Object{}};
tree.SaveModel(&json);
Json expected_json{Object{}};
expected_tree.SaveModel(&expected_json);
ASSERT_EQ(json, expected_json);
}
void TestColumnSplit(bool categorical) {
auto constexpr kRows = 32;
auto constexpr kCols = 16;
RegTree expected_tree{1u, kCols};
ObjInfo task{ObjInfo::kRegression};
{
auto p_dmat = GenerateDMatrix(kRows, kCols, categorical);
auto p_gradients = GenerateGradients(kRows);
Context ctx;
std::unique_ptr<TreeUpdater> updater{TreeUpdater::Create("grow_histmaker", &ctx, &task)};
std::vector<HostDeviceVector<bst_node_t>> position(1);
TrainParam param;
param.Init(Args{});
updater->Update(&param, p_gradients.get(), p_dmat.get(), position, {&expected_tree});
}
auto constexpr kWorldSize = 2;
RunWithInMemoryCommunicator(kWorldSize, VerifyColumnSplit, kRows, kCols, categorical,
std::cref(expected_tree));
}
} // anonymous namespace
TEST(GrowHistMaker, ColumnSplitNumerical) { TestColumnSplit(false); }
TEST(GrowHistMaker, ColumnSplitCategorical) { TestColumnSplit(true); }
} // namespace xgboost::tree