xgboost/regrank/xgboost_regrank_eval.h

164 lines
6.4 KiB
C++

#ifndef XGBOOST_REGRANK_EVAL_H
#define XGBOOST_REGRANK_EVAL_H
/*!
* \file xgboost_regrank_eval.h
* \brief evaluation metrics for regression and classification and rank
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
*/
#include <cmath>
#include <vector>
#include <algorithm>
#include "../utils/xgboost_utils.h"
#include "../utils/xgboost_omp.h"
#include "../utils/xgboost_random.h"
#include "xgboost_regrank_data.h"
namespace xgboost{
namespace regrank{
/*! \brief evaluator that evaluates the loss metrics */
struct IEvaluator{
/*!
* \brief evaluate a specific metric
* \param preds prediction
* \param info information, including label etc.
*/
virtual float Eval(const std::vector<float> &preds,
const DMatrix::Info &info ) const = 0;
/*! \return name of metric */
virtual const char *Name(void) const = 0;
};
/*! \brief RMSE */
struct EvalRMSE : public IEvaluator{
virtual float Eval(const std::vector<float> &preds,
const DMatrix::Info &info ) const {
const unsigned ndata = static_cast<unsigned>(preds.size());
float sum = 0.0, wsum = 0.0;
#pragma omp parallel for reduction(+:sum,wsum) schedule( static )
for (unsigned i = 0; i < ndata; ++i){
const float wt = info.GetWeight(i);
const float diff = info.labels[i] - preds[i];
sum += diff*diff * wt;
wsum += wt;
}
return sqrtf(sum / wsum);
}
virtual const char *Name(void) const{
return "rmse";
}
};
/*! \brief Error */
struct EvalLogLoss : public IEvaluator{
virtual float Eval(const std::vector<float> &preds,
const DMatrix::Info &info ) const {
const unsigned ndata = static_cast<unsigned>(preds.size());
float sum = 0.0f, wsum = 0.0f;
#pragma omp parallel for reduction(+:sum,wsum) schedule( static )
for (unsigned i = 0; i < ndata; ++i){
const float y = info.labels[i];
const float py = preds[i];
const float wt = info.GetWeight(i);
sum -= wt * ( y * std::log(py) + (1.0f - y)*std::log(1 - py) );
wsum+= wt;
}
return sum / wsum;
}
virtual const char *Name(void) const{
return "negllik";
}
};
/*! \brief Error */
struct EvalError : public IEvaluator{
virtual float Eval(const std::vector<float> &preds,
const DMatrix::Info &info ) const {
const unsigned ndata = static_cast<unsigned>(preds.size());
float sum = 0.0f, wsum = 0.0f;
#pragma omp parallel for reduction(+:sum,wsum) schedule( static )
for (unsigned i = 0; i < ndata; ++i){
const float wt = info.GetWeight(i);
if (preds[i] > 0.5f){
if (info.labels[i] < 0.5f) sum += wt;
}
else{
if (info.labels[i] >= 0.5f) sum += wt;
}
wsum += wt;
}
return sum / wsum;
}
virtual const char *Name(void) const{
return "error";
}
};
/*! \brief Area under curve */
struct EvalAuc : public IEvaluator{
inline static bool CmpFirst( const std::pair<float,float> &a, const std::pair<float,float> &b ){
return a.first > b.first;
}
virtual float Eval( const std::vector<float> &preds,
const DMatrix::Info &info ) const {
const std::vector<float> &labels = info.labels;
const unsigned ndata = static_cast<unsigned>( preds.size() );
std::vector< std::pair<float, float> > rec;
for( unsigned i = 0; i < ndata; ++ i ){
rec.push_back( std::make_pair( preds[i], labels[i]) );
}
random::Shuffle( rec );
std::sort( rec.begin(), rec.end(), CmpFirst );
long npos = 0, nhit = 0;
for( unsigned i = 0; i < ndata; ++ i ){
if( rec[i].second > 0.5f ) {
++ npos;
}else{
// this is the number of correct pairs
nhit += npos;
}
}
long nneg = ndata - npos;
utils::Assert( nneg > 0, "the dataset only contains pos samples" );
return static_cast<float>(nhit) / nneg / npos;
}
virtual const char *Name( void ) const{
return "auc";
}
};
};
namespace regrank{
/*! \brief a set of evaluators */
struct EvalSet{
public:
inline void AddEval(const char *name){
for( size_t i = 0; i < evals_.size(); ++ i ){
if(!strcmp(name, evals_[i]->Name())) return;
}
if (!strcmp(name, "rmse")) evals_.push_back( new EvalRMSE() );
if (!strcmp(name, "error")) evals_.push_back( new EvalError() );
if (!strcmp(name, "logloss")) evals_.push_back( new EvalLogLoss() );
if (!strcmp( name, "auc")) evals_.push_back( new EvalAuc() );
}
~EvalSet(){
for( size_t i = 0; i < evals_.size(); ++ i ){
delete evals_[i];
}
}
inline void Eval(FILE *fo, const char *evname,
const std::vector<float> &preds,
const DMatrix::Info &info ) const{
for (size_t i = 0; i < evals_.size(); ++i){
float res = evals_[i]->Eval(preds, info);
fprintf(fo, "\t%s-%s:%f", evname, evals_[i]->Name(), res);
}
}
private:
std::vector<const IEvaluator*> evals_;
};
};
};
#endif