xgboost/regrank/xgboost_regrank_data.h

206 lines
9.1 KiB
C++

#ifndef XGBOOST_REGRANK_DATA_H
#define XGBOOST_REGRANK_DATA_H
/*!
* \file xgboost_regrank_data.h
* \brief input data structure for regression, binary classification, and rankning.
* Format:
* The data should contain each data instance in each line.
* The format of line data is as below:
* label <nonzero feature dimension> [feature index:feature value]+
* When using rank, an addtional group file with suffix group must be provided, giving the number of instances in each group
* When using weighted aware classification(regression), an addtional weight file must be provided, giving the weight of each instance
*
* \author Kailong Chen: chenkl198812@gmail.com, Tianqi Chen: tianqi.tchen@gmail.com
*/
#include <cstdio>
#include <vector>
#include "../booster/xgboost_data.h"
#include "../utils/xgboost_utils.h"
#include "../utils/xgboost_stream.h"
namespace xgboost{
/*! \brief namespace to handle regression and rank */
namespace regrank{
/*! \brief data matrix for regression content */
struct DMatrix{
public:
/*! \brief data information besides the features */
struct Info{
/*! \brief label of each instance */
std::vector<float> labels;
/*! \brief the index of begin and end of a groupneeded when the learning task is ranking */
std::vector<unsigned> group_ptr;
/*! \brief weights of each instance, optional */
std::vector<float> weights;
/*! \brief get weight of each instances */
inline float GetWeight( size_t i ) const{
if( weights.size() != 0 ) return weights[i];
else return 1.0f;
}
};
public:
/*! \brief feature data content */
booster::FMatrixS data;
/*! \brief information fields */
Info info;
public:
/*! \brief default constructor */
DMatrix(void){}
/*! \brief get the number of instances */
inline size_t Size() const{
return info.labels.size();
}
/*!
* \brief load from text file
* \param fname name of text data
* \param silent whether print information or not
*/
inline void LoadText(const char* fname, bool silent = false){
data.Clear();
FILE* file = utils::FopenCheck(fname, "r");
float label; bool init = true;
char tmp[1024];
std::vector<booster::bst_uint> findex;
std::vector<booster::bst_float> fvalue;
while (fscanf(file, "%s", tmp) == 1){
unsigned index; float value;
if (sscanf(tmp, "%u:%f", &index, &value) == 2){
findex.push_back(index); fvalue.push_back(value);
}
else{
if (!init){
info.labels.push_back(label);
data.AddRow(findex, fvalue);
}
findex.clear(); fvalue.clear();
utils::Assert(sscanf(tmp, "%f", &label) == 1, "invalid format");
init = false;
}
}
info.labels.push_back(label);
data.AddRow(findex, fvalue);
// initialize column support as well
data.InitData();
if (!silent){
printf("%ux%u matrix with %lu entries is loaded from %s\n",
(unsigned)data.NumRow(), (unsigned)data.NumCol(), (unsigned long)data.NumEntry(), fname);
}
fclose(file);
this->TryLoadGroup(fname, silent);
this->TryLoadWeight(fname, silent);
}
/*!
* \brief load from binary file
* \param fname name of binary data
* \param silent whether print information or not
* \return whether loading is success
*/
inline bool LoadBinary(const char* fname, bool silent = false){
FILE *fp = fopen64(fname, "rb");
if (fp == NULL) return false;
utils::FileStream fs(fp);
data.LoadBinary(fs);
info.labels.resize(data.NumRow());
utils::Assert(fs.Read(&info.labels[0], sizeof(float)* data.NumRow()) != 0, "DMatrix LoadBinary");
fs.Close();
// initialize column support as well
data.InitData();
if (!silent){
printf("%ux%u matrix with %lu entries is loaded from %s\n",
(unsigned)data.NumRow(), (unsigned)data.NumCol(), (unsigned long)data.NumEntry(), fname);
}
this->TryLoadGroup(fname, silent);
this->TryLoadWeight(fname, silent);
return true;
}
/*!
* \brief save to binary file
* \param fname name of binary data
* \param silent whether print information or not
*/
inline void SaveBinary(const char* fname, bool silent = false){
// initialize column support as well
data.InitData();
utils::FileStream fs(utils::FopenCheck(fname, "wb"));
data.SaveBinary(fs);
fs.Write(&info.labels[0], sizeof(float)* data.NumRow());
fs.Close();
if (!silent){
printf("%ux%u matrix with %lu entries is saved to %s\n",
(unsigned)data.NumRow(), (unsigned)data.NumCol(), (unsigned long)data.NumEntry(), fname);
}
}
/*!
* \brief cache load data given a file name, if filename ends with .buffer, direct load binary
* otherwise the function will first check if fname + '.buffer' exists,
* if binary buffer exists, it will reads from binary buffer, otherwise, it will load from text file,
* and try to create a buffer file
* \param fname name of binary data
* \param silent whether print information or not
* \param savebuffer whether do save binary buffer if it is text
*/
inline void CacheLoad(const char *fname, bool silent = false, bool savebuffer = true){
int len = strlen(fname);
if (len > 8 && !strcmp(fname + len - 7, ".buffer")){
this->LoadBinary(fname, silent); return;
}
char bname[1024];
sprintf(bname, "%s.buffer", fname);
if (!this->LoadBinary(bname, silent)){
this->LoadText(fname, silent);
if (savebuffer) this->SaveBinary(bname, silent);
}
}
private:
inline bool TryLoadGroup(const char* fname, bool silent = false){
std::string name = fname;
if (name.length() > 8 && !strcmp(fname + name.length() - 7, ".buffer")){
name.resize( name.length() - 7 );
}
name += ".group";
//if exists group data load it in
FILE *fi = fopen64(name.c_str(), "r");
if (fi == NULL) return false;
info.group_ptr.push_back(0);
unsigned nline;
while (fscanf(fi, "%u", &nline) == 1){
info.group_ptr.push_back(info.group_ptr.back()+nline);
}
if(!silent){
printf("%lu groups are loaded from %s\n", info.group_ptr.size()-1, name.c_str());
}
fclose(fi);
utils::Assert( info.group_ptr.back() == data.NumRow(), "DMatrix: group data does not match the number of rows in feature matrix" );
return true;
}
inline bool TryLoadWeight(const char* fname, bool silent = false){
std::string name = fname;
if (name.length() > 8 && !strcmp(fname + name.length() - 7, ".buffer")){
name.resize( name.length() - 7 );
}
name += ".weight";
//if exists group data load it in
FILE *fi = fopen64(name.c_str(), "r");
if (fi == NULL) return false;
float wt;
while (fscanf(fi, "%f", &wt) == 1){
info.weights.push_back( wt );
}
if(!silent){
printf("loading weight from %s\n", name.c_str());
}
fclose(fi);
utils::Assert( info.weights.size() == data.NumRow(), "DMatrix: weight data does not match the number of rows in feature matrix" );
return true;
}
};
};
};
#endif