* Pass sparse page as adapter, which prepares for quantile dmatrix. * Remove old external memory code like `rbegin` and extra `Init` function. * Simplify type dispatch.
167 lines
6.4 KiB
C++
167 lines
6.4 KiB
C++
/*!
|
|
* Copyright 2017-2022 by XGBoost Contributors
|
|
* \brief Data type for fast histogram aggregation.
|
|
*/
|
|
#include "gradient_index.h"
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <memory>
|
|
|
|
#include "../common/column_matrix.h"
|
|
#include "../common/hist_util.h"
|
|
#include "../common/numeric.h"
|
|
#include "../common/threading_utils.h"
|
|
|
|
namespace xgboost {
|
|
|
|
GHistIndexMatrix::GHistIndexMatrix() : columns_{std::make_unique<common::ColumnMatrix>()} {}
|
|
|
|
GHistIndexMatrix::GHistIndexMatrix(DMatrix *p_fmat, bst_bin_t max_bins_per_feat,
|
|
double sparse_thresh, bool sorted_sketch, int32_t n_threads,
|
|
common::Span<float> hess) {
|
|
CHECK(p_fmat->SingleColBlock());
|
|
// We use sorted sketching for approx tree method since it's more efficient in
|
|
// computation time (but higher memory usage).
|
|
cut = common::SketchOnDMatrix(p_fmat, max_bins_per_feat, n_threads, sorted_sketch, hess);
|
|
|
|
max_num_bins = max_bins_per_feat;
|
|
const uint32_t nbins = cut.Ptrs().back();
|
|
hit_count.resize(nbins, 0);
|
|
hit_count_tloc_.resize(n_threads * nbins, 0);
|
|
|
|
size_t new_size = 1;
|
|
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
|
new_size += batch.Size();
|
|
}
|
|
|
|
row_ptr.resize(new_size);
|
|
row_ptr[0] = 0;
|
|
|
|
const bool isDense = p_fmat->IsDense();
|
|
this->isDense_ = isDense;
|
|
auto ft = p_fmat->Info().feature_types.ConstHostSpan();
|
|
|
|
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
|
this->PushBatch(batch, ft, nbins, n_threads);
|
|
}
|
|
this->columns_ = std::make_unique<common::ColumnMatrix>();
|
|
|
|
// hessian is empty when hist tree method is used or when dataset is empty
|
|
if (hess.empty() && !std::isnan(sparse_thresh)) {
|
|
// hist
|
|
CHECK(!sorted_sketch);
|
|
for (auto const &page : p_fmat->GetBatches<SparsePage>()) {
|
|
this->columns_->Init(page, *this, sparse_thresh, n_threads);
|
|
}
|
|
}
|
|
}
|
|
|
|
GHistIndexMatrix::~GHistIndexMatrix() = default;
|
|
|
|
void GHistIndexMatrix::PushBatch(SparsePage const &batch, common::Span<FeatureType const> ft,
|
|
bst_bin_t n_total_bins, int32_t n_threads) {
|
|
auto page = batch.GetView();
|
|
auto it = common::MakeIndexTransformIter([&](size_t ridx) { return page[ridx].size(); });
|
|
common::PartialSum(n_threads, it, it + page.Size(), static_cast<size_t>(0), row_ptr.begin());
|
|
// The number of threads is pegged to the batch size. If the OMP block is parallelized
|
|
// on anything other than the batch/block size, it should be reassigned
|
|
const size_t batch_threads =
|
|
std::max(static_cast<size_t>(1), std::min(batch.Size(), static_cast<size_t>(n_threads)));
|
|
|
|
const size_t n_index = row_ptr[batch.Size()]; // number of entries in this page
|
|
ResizeIndex(n_index, isDense_);
|
|
|
|
CHECK_GT(cut.Values().size(), 0U);
|
|
|
|
if (isDense_) {
|
|
index.SetBinOffset(cut.Ptrs());
|
|
}
|
|
uint32_t const *offsets = index.Offset();
|
|
|
|
auto n_bins_total = cut.TotalBins();
|
|
auto is_valid = [](auto) { return true; }; // SparsePage always contains valid entries
|
|
data::SparsePageAdapterBatch adapter_batch{page};
|
|
if (isDense_) {
|
|
// Inside the lambda functions, bin_idx is the index for cut value across all
|
|
// features. By subtracting it with starting pointer of each feature, we can reduce
|
|
// it to smaller value and compress it to smaller types.
|
|
common::DispatchBinType(index.GetBinTypeSize(), [&](auto dtype) {
|
|
using T = decltype(dtype);
|
|
common::Span<T> index_data_span = {index.data<T>(), index.Size()};
|
|
SetIndexData(
|
|
index_data_span, ft, batch_threads, adapter_batch, is_valid, n_bins_total,
|
|
[offsets](auto bin_idx, auto fidx) { return static_cast<T>(bin_idx - offsets[fidx]); });
|
|
});
|
|
} else {
|
|
/* For sparse DMatrix we have to store index of feature for each bin
|
|
in index field to chose right offset. So offset is nullptr and index is
|
|
not reduced */
|
|
common::Span<uint32_t> index_data_span = {index.data<uint32_t>(), n_index};
|
|
SetIndexData(index_data_span, ft, batch_threads, adapter_batch, is_valid, n_bins_total,
|
|
[](auto idx, auto) { return idx; });
|
|
}
|
|
|
|
common::ParallelFor(n_total_bins, n_threads, [&](bst_omp_uint idx) {
|
|
for (int32_t tid = 0; tid < n_threads; ++tid) {
|
|
hit_count[idx] += hit_count_tloc_[tid * n_total_bins + idx];
|
|
hit_count_tloc_[tid * n_total_bins + idx] = 0; // reset for next batch
|
|
}
|
|
});
|
|
}
|
|
|
|
void GHistIndexMatrix::Init(SparsePage const &batch, common::Span<FeatureType const> ft,
|
|
common::HistogramCuts const &cuts, int32_t max_bins_per_feat,
|
|
bool isDense, double sparse_thresh, int32_t n_threads) {
|
|
CHECK_GE(n_threads, 1);
|
|
base_rowid = batch.base_rowid;
|
|
isDense_ = isDense;
|
|
cut = cuts;
|
|
max_num_bins = max_bins_per_feat;
|
|
CHECK_EQ(row_ptr.size(), 0);
|
|
// The number of threads is pegged to the batch size. If the OMP
|
|
// block is parallelized on anything other than the batch/block size,
|
|
// it should be reassigned
|
|
row_ptr.resize(batch.Size() + 1, 0);
|
|
const uint32_t nbins = cut.Ptrs().back();
|
|
hit_count.resize(nbins, 0);
|
|
hit_count_tloc_.resize(n_threads * nbins, 0);
|
|
|
|
this->PushBatch(batch, ft, nbins, n_threads);
|
|
this->columns_ = std::make_unique<common::ColumnMatrix>();
|
|
if (!std::isnan(sparse_thresh)) {
|
|
this->columns_->Init(batch, *this, sparse_thresh, n_threads);
|
|
}
|
|
}
|
|
|
|
void GHistIndexMatrix::ResizeIndex(const size_t n_index, const bool isDense) {
|
|
if ((max_num_bins - 1 <= static_cast<int>(std::numeric_limits<uint8_t>::max())) && isDense) {
|
|
// compress dense index to uint8
|
|
index.SetBinTypeSize(common::kUint8BinsTypeSize);
|
|
index.Resize((sizeof(uint8_t)) * n_index);
|
|
} else if ((max_num_bins - 1 > static_cast<int>(std::numeric_limits<uint8_t>::max()) &&
|
|
max_num_bins - 1 <= static_cast<int>(std::numeric_limits<uint16_t>::max())) &&
|
|
isDense) {
|
|
// compress dense index to uint16
|
|
index.SetBinTypeSize(common::kUint16BinsTypeSize);
|
|
index.Resize((sizeof(uint16_t)) * n_index);
|
|
} else {
|
|
index.SetBinTypeSize(common::kUint32BinsTypeSize);
|
|
index.Resize((sizeof(uint32_t)) * n_index);
|
|
}
|
|
}
|
|
|
|
common::ColumnMatrix const &GHistIndexMatrix::Transpose() const {
|
|
CHECK(columns_);
|
|
return *columns_;
|
|
}
|
|
|
|
bool GHistIndexMatrix::ReadColumnPage(dmlc::SeekStream *fi) {
|
|
return this->columns_->Read(fi, this->cut.Ptrs().data());
|
|
}
|
|
|
|
size_t GHistIndexMatrix::WriteColumnPage(dmlc::Stream *fo) const {
|
|
return this->columns_->Write(fo);
|
|
}
|
|
} // namespace xgboost
|