156 lines
5.8 KiB
Plaintext
156 lines
5.8 KiB
Plaintext
/**
|
|
* Copyright 2022-2023 by XGBoost Contributors
|
|
*/
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <cstddef> // std::size_t
|
|
#include <utility> // std::pair
|
|
#include <vector> // std::vector
|
|
|
|
#include "../../../src/common/linalg_op.cuh" // ElementWiseTransformDevice
|
|
#include "../../../src/common/stats.cuh"
|
|
#include "xgboost/base.h" // XGBOOST_DEVICE
|
|
#include "xgboost/context.h" // Context
|
|
#include "xgboost/host_device_vector.h" // HostDeviceVector
|
|
#include "xgboost/linalg.h" // Tensor
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
namespace {
|
|
class StatsGPU : public ::testing::Test {
|
|
private:
|
|
linalg::Tensor<float, 1> arr_{{1.f, 2.f, 3.f, 4.f, 5.f, 2.f, 4.f, 5.f, 3.f, 1.f}, {10}, 0};
|
|
linalg::Tensor<std::size_t, 1> indptr_{{0, 5, 10}, {3}, 0};
|
|
HostDeviceVector<float> results_;
|
|
using TestSet = std::vector<std::pair<float, float>>;
|
|
Context ctx_;
|
|
|
|
void Check(float expected) {
|
|
auto const& h_results = results_.HostVector();
|
|
ASSERT_EQ(h_results.size(), indptr_.Size() - 1);
|
|
ASSERT_EQ(h_results.front(), expected);
|
|
ASSERT_EQ(h_results.back(), expected);
|
|
}
|
|
|
|
public:
|
|
void SetUp() override { ctx_.gpu_id = 0; }
|
|
|
|
void WeightedMulti() {
|
|
// data for one segment
|
|
std::vector<float> seg{1.f, 2.f, 3.f, 4.f, 5.f};
|
|
auto seg_size = seg.size();
|
|
|
|
// 3 segments
|
|
std::vector<float> data;
|
|
data.insert(data.cend(), seg.begin(), seg.end());
|
|
data.insert(data.cend(), seg.begin(), seg.end());
|
|
data.insert(data.cend(), seg.begin(), seg.end());
|
|
linalg::Tensor<float, 1> arr{data.cbegin(), data.cend(), {data.size()}, 0};
|
|
auto d_arr = arr.View(0);
|
|
|
|
auto key_it = dh::MakeTransformIterator<std::size_t>(
|
|
thrust::make_counting_iterator(0ul),
|
|
[=] XGBOOST_DEVICE(std::size_t i) { return i * seg_size; });
|
|
auto val_it =
|
|
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
|
|
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
|
|
|
|
// one alpha for each segment
|
|
HostDeviceVector<float> alphas{0.0f, 0.5f, 1.0f};
|
|
alphas.SetDevice(0);
|
|
auto d_alphas = alphas.ConstDeviceSpan();
|
|
auto w_it = thrust::make_constant_iterator(0.1f);
|
|
SegmentedWeightedQuantile(&ctx_, d_alphas.data(), key_it, key_it + d_alphas.size() + 1, val_it,
|
|
val_it + d_arr.Size(), w_it, w_it + d_arr.Size(), &results_);
|
|
|
|
auto const& h_results = results_.HostVector();
|
|
ASSERT_EQ(1.0f, h_results[0]);
|
|
ASSERT_EQ(3.0f, h_results[1]);
|
|
ASSERT_EQ(5.0f, h_results[2]);
|
|
}
|
|
|
|
void Weighted() {
|
|
auto d_arr = arr_.View(0);
|
|
auto d_key = indptr_.View(0);
|
|
|
|
auto key_it = dh::MakeTransformIterator<std::size_t>(
|
|
thrust::make_counting_iterator(0ul),
|
|
[=] XGBOOST_DEVICE(std::size_t i) { return d_key(i); });
|
|
auto val_it =
|
|
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
|
|
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
|
|
linalg::Tensor<float, 1> weights{{10}, 0};
|
|
linalg::ElementWiseTransformDevice(weights.View(0),
|
|
[=] XGBOOST_DEVICE(std::size_t, float) { return 1.0; });
|
|
auto w_it = weights.Data()->ConstDevicePointer();
|
|
for (auto const& pair : TestSet{{0.0f, 1.0f}, {0.5f, 3.0f}, {1.0f, 5.0f}}) {
|
|
SegmentedWeightedQuantile(&ctx_, pair.first, key_it, key_it + indptr_.Size(), val_it,
|
|
val_it + arr_.Size(), w_it, w_it + weights.Size(), &results_);
|
|
this->Check(pair.second);
|
|
}
|
|
}
|
|
|
|
void NonWeightedMulti() {
|
|
// data for one segment
|
|
std::vector<float> seg{20.f, 15.f, 50.f, 40.f, 35.f};
|
|
auto seg_size = seg.size();
|
|
|
|
// 3 segments
|
|
std::vector<float> data;
|
|
data.insert(data.cend(), seg.begin(), seg.end());
|
|
data.insert(data.cend(), seg.begin(), seg.end());
|
|
data.insert(data.cend(), seg.begin(), seg.end());
|
|
linalg::Tensor<float, 1> arr{data.cbegin(), data.cend(), {data.size()}, 0};
|
|
auto d_arr = arr.View(0);
|
|
|
|
auto key_it = dh::MakeTransformIterator<std::size_t>(
|
|
thrust::make_counting_iterator(0ul),
|
|
[=] XGBOOST_DEVICE(std::size_t i) { return i * seg_size; });
|
|
auto val_it =
|
|
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
|
|
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
|
|
|
|
// one alpha for each segment
|
|
HostDeviceVector<float> alphas{0.1f, 0.2f, 0.4f};
|
|
alphas.SetDevice(0);
|
|
auto d_alphas = alphas.ConstDeviceSpan();
|
|
SegmentedQuantile(&ctx_, d_alphas.data(), key_it, key_it + d_alphas.size() + 1, val_it,
|
|
val_it + d_arr.Size(), &results_);
|
|
|
|
auto const& h_results = results_.HostVector();
|
|
EXPECT_EQ(15.0f, h_results[0]);
|
|
EXPECT_EQ(16.0f, h_results[1]);
|
|
ASSERT_EQ(26.0f, h_results[2]);
|
|
}
|
|
|
|
void NonWeighted() {
|
|
auto d_arr = arr_.View(0);
|
|
auto d_key = indptr_.View(0);
|
|
|
|
auto key_it = dh::MakeTransformIterator<std::size_t>(
|
|
thrust::make_counting_iterator(0ul), [=] __device__(std::size_t i) { return d_key(i); });
|
|
auto val_it =
|
|
dh::MakeTransformIterator<float>(thrust::make_counting_iterator(0ul),
|
|
[=] XGBOOST_DEVICE(std::size_t i) { return d_arr(i); });
|
|
|
|
for (auto const& pair : TestSet{{0.0f, 1.0f}, {0.5f, 3.0f}, {1.0f, 5.0f}}) {
|
|
SegmentedQuantile(&ctx_, pair.first, key_it, key_it + indptr_.Size(), val_it,
|
|
val_it + arr_.Size(), &results_);
|
|
this->Check(pair.second);
|
|
}
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
TEST_F(StatsGPU, Quantile) {
|
|
this->NonWeighted();
|
|
this->NonWeightedMulti();
|
|
}
|
|
|
|
TEST_F(StatsGPU, WeightedQuantile) {
|
|
this->Weighted();
|
|
this->WeightedMulti();
|
|
}
|
|
} // namespace common
|
|
} // namespace xgboost
|