xgboost/tests/cpp/plugin/test_predictor_oneapi.cc
Vladislav Epifanov 388f975cf5
Introducing DPC++-based plugin (predictor, objective function) supporting oneAPI programming model (#5825)
* Added plugin with DPC++-based predictor and objective function

* Update CMakeLists.txt

* Update regression_obj_oneapi.cc

* Added README.md for OneAPI plugin

* Added OneAPI predictor support to gbtree

* Update README.md

* Merged kernels in gradient computation. Enabled multiple loss functions with DPC++ backend

* Aligned plugin CMake files with latest master changes. Fixed whitespace typos

* Removed debug output

* [CI] Make oneapi_plugin a CMake target

* Added tests for OneAPI plugin for predictor and obj. functions

* Temporarily switched to default selector for device dispacthing in OneAPI plugin to enable execution in environments without gpus

* Updated readme file.

* Fixed USM usage in predictor

* Removed workaround with explicit templated names for DPC++ kernels

* Fixed warnings in plugin tests

* Fix CMake build of gtest

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-08-08 18:40:40 -07:00

169 lines
6.0 KiB
C++
Executable File

/*!
* Copyright 2017-2020 XGBoost contributors
*/
#include <dmlc/filesystem.h>
#include <gtest/gtest.h>
#include <xgboost/predictor.h>
#include "../helpers.h"
#include "../predictor/test_predictor.h"
#include "../../../src/gbm/gbtree_model.h"
#include "../../../src/data/adapter.h"
namespace xgboost {
TEST(Plugin, OneAPIPredictorBasic) {
auto lparam = CreateEmptyGenericParam(0);
std::unique_ptr<Predictor> oneapi_predictor =
std::unique_ptr<Predictor>(Predictor::Create("oneapi_predictor", &lparam));
int kRows = 5;
int kCols = 5;
LearnerModelParam param;
param.num_feature = kCols;
param.base_score = 0.0;
param.num_output_group = 1;
gbm::GBTreeModel model = CreateTestModel(&param);
auto dmat = RandomDataGenerator(kRows, kCols, 0).GenerateDMatrix();
// Test predict batch
PredictionCacheEntry out_predictions;
oneapi_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
ASSERT_EQ(model.trees.size(), out_predictions.version);
std::vector<float>& out_predictions_h = out_predictions.predictions.HostVector();
for (size_t i = 0; i < out_predictions.predictions.Size(); i++) {
ASSERT_EQ(out_predictions_h[i], 1.5);
}
// Test predict instance
auto const &batch = *dmat->GetBatches<xgboost::SparsePage>().begin();
for (size_t i = 0; i < batch.Size(); i++) {
std::vector<float> instance_out_predictions;
oneapi_predictor->PredictInstance(batch[i], &instance_out_predictions, model);
ASSERT_EQ(instance_out_predictions[0], 1.5);
}
// Test predict leaf
std::vector<float> leaf_out_predictions;
oneapi_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
for (auto v : leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
// Test predict contribution
std::vector<float> out_contribution;
oneapi_predictor->PredictContribution(dmat.get(), &out_contribution, model);
ASSERT_EQ(out_contribution.size(), kRows * (kCols + 1));
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i+1) % (kCols+1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
// Test predict contribution (approximate method)
oneapi_predictor->PredictContribution(dmat.get(), &out_contribution, model, 0, nullptr, true);
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i+1) % (kCols+1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
}
TEST(Plugin, OneAPIPredictorExternalMemory) {
dmlc::TemporaryDirectory tmpdir;
std::string filename = tmpdir.path + "/big.libsvm";
std::unique_ptr<DMatrix> dmat = CreateSparsePageDMatrix(12, 64, filename);
auto lparam = CreateEmptyGenericParam(0);
std::unique_ptr<Predictor> oneapi_predictor =
std::unique_ptr<Predictor>(Predictor::Create("oneapi_predictor", &lparam));
LearnerModelParam param;
param.base_score = 0;
param.num_feature = dmat->Info().num_col_;
param.num_output_group = 1;
gbm::GBTreeModel model = CreateTestModel(&param);
// Test predict batch
PredictionCacheEntry out_predictions;
oneapi_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
std::vector<float> &out_predictions_h = out_predictions.predictions.HostVector();
ASSERT_EQ(out_predictions.predictions.Size(), dmat->Info().num_row_);
for (const auto& v : out_predictions_h) {
ASSERT_EQ(v, 1.5);
}
// Test predict leaf
std::vector<float> leaf_out_predictions;
oneapi_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
ASSERT_EQ(leaf_out_predictions.size(), dmat->Info().num_row_);
for (const auto& v : leaf_out_predictions) {
ASSERT_EQ(v, 0);
}
// Test predict contribution
std::vector<float> out_contribution;
oneapi_predictor->PredictContribution(dmat.get(), &out_contribution, model);
ASSERT_EQ(out_contribution.size(), dmat->Info().num_row_ * (dmat->Info().num_col_ + 1));
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
// Test predict contribution (approximate method)
std::vector<float> out_contribution_approximate;
oneapi_predictor->PredictContribution(dmat.get(), &out_contribution_approximate, model, 0, nullptr, true);
ASSERT_EQ(out_contribution_approximate.size(),
dmat->Info().num_row_ * (dmat->Info().num_col_ + 1));
for (size_t i = 0; i < out_contribution.size(); ++i) {
auto const& contri = out_contribution[i];
// shift 1 for bias, as test tree is a decision dump, only global bias is filled with LeafValue().
if ((i + 1) % (dmat->Info().num_col_ + 1) == 0) {
ASSERT_EQ(out_contribution.back(), 1.5f);
} else {
ASSERT_EQ(contri, 0);
}
}
}
TEST(Plugin, OneAPIPredictorInplacePredict) {
bst_row_t constexpr kRows{128};
bst_feature_t constexpr kCols{64};
auto gen = RandomDataGenerator{kRows, kCols, 0.5}.Device(-1);
{
HostDeviceVector<float> data;
gen.GenerateDense(&data);
ASSERT_EQ(data.Size(), kRows * kCols);
std::shared_ptr<data::DenseAdapter> x{
new data::DenseAdapter(data.HostPointer(), kRows, kCols)};
TestInplacePrediction(x, "oneapi_predictor", kRows, kCols, -1);
}
{
HostDeviceVector<float> data;
HostDeviceVector<bst_row_t> rptrs;
HostDeviceVector<bst_feature_t> columns;
gen.GenerateCSR(&data, &rptrs, &columns);
std::shared_ptr<data::CSRAdapter> x{new data::CSRAdapter(
rptrs.HostPointer(), columns.HostPointer(), data.HostPointer(), kRows,
data.Size(), kCols)};
TestInplacePrediction(x, "oneapi_predictor", kRows, kCols, -1);
}
}
} // namespace xgboost