xgboost/tests/cpp/tree/test_tree_model.cc
2019-12-11 11:20:40 +08:00

249 lines
7.3 KiB
C++

// Copyright by Contributors
#include <gtest/gtest.h>
#include <xgboost/tree_model.h>
#include "../helpers.h"
#include "dmlc/filesystem.h"
#include "xgboost/json_io.h"
namespace xgboost {
// Manually construct tree in binary format
// Do not use structs in case they change
// We want to preserve backwards compatibility
TEST(Tree, Load) {
dmlc::TemporaryDirectory tempdir;
const std::string tmp_file = tempdir.path + "/tree.model";
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(tmp_file.c_str(), "w"));
// Write params
EXPECT_EQ(sizeof(TreeParam), (31 + 6) * sizeof(int));
int num_roots = 1;
int num_nodes = 2;
int num_deleted = 0;
int max_depth = 1;
int num_feature = 0;
int size_leaf_vector = 0;
int reserved[31];
fo->Write(&num_roots, sizeof(int));
fo->Write(&num_nodes, sizeof(int));
fo->Write(&num_deleted, sizeof(int));
fo->Write(&max_depth, sizeof(int));
fo->Write(&num_feature, sizeof(int));
fo->Write(&size_leaf_vector, sizeof(int));
fo->Write(reserved, sizeof(int) * 31);
// Write 2 nodes
EXPECT_EQ(sizeof(RegTree::Node),
3 * sizeof(int) + 1 * sizeof(unsigned) + sizeof(float));
int parent = -1;
int cleft = 1;
int cright = -1;
unsigned sindex = 5;
float split_or_weight = 0.5;
fo->Write(&parent, sizeof(int));
fo->Write(&cleft, sizeof(int));
fo->Write(&cright, sizeof(int));
fo->Write(&sindex, sizeof(unsigned));
fo->Write(&split_or_weight, sizeof(float));
parent = 0;
cleft = -1;
cright = -1;
sindex = 2;
split_or_weight = 0.1;
fo->Write(&parent, sizeof(int));
fo->Write(&cleft, sizeof(int));
fo->Write(&cright, sizeof(int));
fo->Write(&sindex, sizeof(unsigned));
fo->Write(&split_or_weight, sizeof(float));
// Write 2x node stats
EXPECT_EQ(sizeof(RTreeNodeStat), 3 * sizeof(float) + sizeof(int));
bst_float loss_chg = 5.0;
bst_float sum_hess = 1.0;
bst_float base_weight = 3.0;
int leaf_child_cnt = 0;
fo->Write(&loss_chg, sizeof(float));
fo->Write(&sum_hess, sizeof(float));
fo->Write(&base_weight, sizeof(float));
fo->Write(&leaf_child_cnt, sizeof(int));
loss_chg = 50.0;
sum_hess = 10.0;
base_weight = 30.0;
leaf_child_cnt = 0;
fo->Write(&loss_chg, sizeof(float));
fo->Write(&sum_hess, sizeof(float));
fo->Write(&base_weight, sizeof(float));
fo->Write(&leaf_child_cnt, sizeof(int));
fo.reset();
std::unique_ptr<dmlc::Stream> fi(dmlc::Stream::Create(tmp_file.c_str(), "r"));
xgboost::RegTree tree;
tree.Load(fi.get());
EXPECT_EQ(tree.GetDepth(1), 1);
EXPECT_EQ(tree[0].SplitCond(), 0.5f);
EXPECT_EQ(tree[0].SplitIndex(), 5);
EXPECT_EQ(tree[1].LeafValue(), 0.1f);
EXPECT_TRUE(tree[1].IsLeaf());
}
TEST(Tree, AllocateNode) {
RegTree tree;
tree.ExpandNode(
0, 0, 0.0f, false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
tree.CollapseToLeaf(0, 0);
ASSERT_EQ(tree.NumExtraNodes(), 0);
tree.ExpandNode(
0, 0, 0.0f, false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
ASSERT_EQ(tree.NumExtraNodes(), 2);
auto& nodes = tree.GetNodes();
ASSERT_FALSE(nodes.at(1).IsDeleted());
ASSERT_TRUE(nodes.at(1).IsLeaf());
ASSERT_TRUE(nodes.at(2).IsLeaf());
}
RegTree ConstructTree() {
RegTree tree;
tree.ExpandNode(
/*nid=*/0, /*split_index=*/0, /*split_value=*/0.0f,
/*default_left=*/true,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
auto left = tree[0].LeftChild();
auto right = tree[0].RightChild();
tree.ExpandNode(
/*nid=*/left, /*split_index=*/1, /*split_value=*/1.0f,
/*default_left=*/false,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
tree.ExpandNode(
/*nid=*/right, /*split_index=*/2, /*split_value=*/2.0f,
/*default_left=*/false,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
return tree;
}
TEST(Tree, DumpJson) {
auto tree = ConstructTree();
FeatureMap fmap;
auto str = tree.DumpModel(fmap, true, "json");
size_t n_leaves = 0;
size_t iter = 0;
while ((iter = str.find("leaf", iter + 1)) != std::string::npos) {
n_leaves++;
}
ASSERT_EQ(n_leaves, 4);
size_t n_conditions = 0;
iter = 0;
while ((iter = str.find("split_condition", iter + 1)) != std::string::npos) {
n_conditions++;
}
ASSERT_EQ(n_conditions, 3);
fmap.PushBack(0, "feat_0", "i");
fmap.PushBack(1, "feat_1", "q");
fmap.PushBack(2, "feat_2", "int");
str = tree.DumpModel(fmap, true, "json");
ASSERT_NE(str.find(R"("split": "feat_0")"), std::string::npos);
ASSERT_NE(str.find(R"("split": "feat_1")"), std::string::npos);
ASSERT_NE(str.find(R"("split": "feat_2")"), std::string::npos);
str = tree.DumpModel(fmap, false, "json");
ASSERT_EQ(str.find("cover"), std::string::npos);
}
TEST(Tree, DumpText) {
auto tree = ConstructTree();
FeatureMap fmap;
auto str = tree.DumpModel(fmap, true, "text");
size_t n_leaves = 0;
size_t iter = 0;
while ((iter = str.find("leaf", iter + 1)) != std::string::npos) {
n_leaves++;
}
ASSERT_EQ(n_leaves, 4);
iter = 0;
size_t n_conditions = 0;
while ((iter = str.find("gain", iter + 1)) != std::string::npos) {
n_conditions++;
}
ASSERT_EQ(n_conditions, 3);
ASSERT_NE(str.find("[f0<0]"), std::string::npos);
ASSERT_NE(str.find("[f1<1]"), std::string::npos);
ASSERT_NE(str.find("[f2<2]"), std::string::npos);
fmap.PushBack(0, "feat_0", "i");
fmap.PushBack(1, "feat_1", "q");
fmap.PushBack(2, "feat_2", "int");
str = tree.DumpModel(fmap, true, "text");
ASSERT_NE(str.find("[feat_0]"), std::string::npos);
ASSERT_NE(str.find("[feat_1<1]"), std::string::npos);
ASSERT_NE(str.find("[feat_2<2]"), std::string::npos);
str = tree.DumpModel(fmap, false, "text");
ASSERT_EQ(str.find("cover"), std::string::npos);
}
TEST(Tree, DumpDot) {
auto tree = ConstructTree();
FeatureMap fmap;
auto str = tree.DumpModel(fmap, true, "dot");
size_t n_leaves = 0;
size_t iter = 0;
while ((iter = str.find("leaf", iter + 1)) != std::string::npos) {
n_leaves++;
}
ASSERT_EQ(n_leaves, 4);
size_t n_edges = 0;
iter = 0;
while ((iter = str.find("->", iter + 1)) != std::string::npos) {
n_edges++;
}
ASSERT_EQ(n_edges, 6);
fmap.PushBack(0, "feat_0", "i");
fmap.PushBack(1, "feat_1", "q");
fmap.PushBack(2, "feat_2", "int");
str = tree.DumpModel(fmap, true, "dot");
ASSERT_NE(str.find(R"("feat_0")"), std::string::npos);
ASSERT_NE(str.find(R"(feat_1<1)"), std::string::npos);
ASSERT_NE(str.find(R"(feat_2<2)"), std::string::npos);
str = tree.DumpModel(fmap, true, R"(dot:{"graph_attrs": {"bgcolor": "#FFFF00"}})");
ASSERT_NE(str.find(R"(graph [ bgcolor="#FFFF00" ])"), std::string::npos);
}
TEST(Tree, Json_IO) {
RegTree tree;
tree.ExpandNode(0, 0, 0.0f, false, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
Json j_tree{Object()};
tree.SaveModel(&j_tree);
std::stringstream ss;
Json::Dump(j_tree, &ss);
auto tparam = j_tree["tree_param"];
ASSERT_EQ(get<String>(tparam["num_feature"]), "0");
ASSERT_EQ(get<String>(tparam["num_nodes"]), "3");
ASSERT_EQ(get<String>(tparam["size_leaf_vector"]), "0");
ASSERT_EQ(get<Array const>(j_tree["left_children"]).size(), 3);
ASSERT_EQ(get<Array const>(j_tree["right_children"]).size(), 3);
ASSERT_EQ(get<Array const>(j_tree["parents"]).size(), 3);
ASSERT_EQ(get<Array const>(j_tree["split_indices"]).size(), 3);
ASSERT_EQ(get<Array const>(j_tree["split_conditions"]).size(), 3);
ASSERT_EQ(get<Array const>(j_tree["default_left"]).size(), 3);
RegTree loaded_tree;
loaded_tree.LoadModel(j_tree);
ASSERT_EQ(loaded_tree.param.num_nodes, 3);
}
} // namespace xgboost