* Add saving/loading JSON configuration. * Implement Python pickle interface with new IO routines. * Basic tests for training continuation.
179 lines
5.4 KiB
C++
179 lines
5.4 KiB
C++
#include <gtest/gtest.h>
|
|
#include <dmlc/filesystem.h>
|
|
#include <xgboost/generic_parameters.h>
|
|
|
|
#include "xgboost/learner.h"
|
|
#include "../helpers.h"
|
|
#include "../../../src/gbm/gbtree.h"
|
|
|
|
namespace xgboost {
|
|
TEST(GBTree, SelectTreeMethod) {
|
|
size_t constexpr kCols = 10;
|
|
|
|
GenericParameter generic_param;
|
|
generic_param.UpdateAllowUnknown(Args{});
|
|
LearnerModelParam mparam;
|
|
mparam.base_score = 0.5;
|
|
mparam.num_feature = kCols;
|
|
mparam.num_output_group = 1;
|
|
|
|
std::vector<std::shared_ptr<DMatrix> > caches;
|
|
std::unique_ptr<GradientBooster> p_gbm{
|
|
GradientBooster::Create("gbtree", &generic_param, &mparam, caches)};
|
|
auto& gbtree = dynamic_cast<gbm::GBTree&> (*p_gbm);
|
|
|
|
// Test if `tree_method` can be set
|
|
Args args {{"tree_method", "approx"}};
|
|
gbtree.Configure({args.cbegin(), args.cend()});
|
|
|
|
gbtree.Configure(args);
|
|
auto const& tparam = gbtree.GetTrainParam();
|
|
gbtree.Configure({{"tree_method", "approx"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_histmaker,prune");
|
|
gbtree.Configure({{"tree_method", "exact"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_colmaker,prune");
|
|
gbtree.Configure({{"tree_method", "hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
|
|
gbtree.Configure({{"booster", "dart"}, {"tree_method", "hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_quantile_histmaker");
|
|
|
|
#ifdef XGBOOST_USE_CUDA
|
|
generic_param.UpdateAllowUnknown(Args{{"gpu_id", "0"}});
|
|
gbtree.Configure({{"tree_method", "gpu_hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
|
|
gbtree.Configure({{"booster", "dart"}, {"tree_method", "gpu_hist"}});
|
|
ASSERT_EQ(tparam.updater_seq, "grow_gpu_hist");
|
|
#endif // XGBOOST_USE_CUDA
|
|
}
|
|
|
|
#ifdef XGBOOST_USE_CUDA
|
|
TEST(GBTree, ChoosePredictor) {
|
|
size_t constexpr kRows = 17;
|
|
size_t constexpr kCols = 15;
|
|
|
|
auto pp_dmat = CreateDMatrix(kRows, kCols, 0);
|
|
std::shared_ptr<DMatrix> p_dmat {*pp_dmat};
|
|
|
|
auto& data = (*(p_dmat->GetBatches<SparsePage>().begin())).data;
|
|
p_dmat->Info().labels_.Resize(kRows);
|
|
|
|
auto learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
|
|
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
learner->UpdateOneIter(i, p_dmat.get());
|
|
}
|
|
ASSERT_TRUE(data.HostCanWrite());
|
|
dmlc::TemporaryDirectory tempdir;
|
|
const std::string fname = tempdir.path + "/model_param.bst";
|
|
|
|
{
|
|
std::unique_ptr<dmlc::Stream> fo(dmlc::Stream::Create(fname.c_str(), "w"));
|
|
learner->Save(fo.get());
|
|
}
|
|
|
|
// a new learner
|
|
learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
|
|
{
|
|
std::unique_ptr<dmlc::Stream> fi(dmlc::Stream::Create(fname.c_str(), "r"));
|
|
learner->Load(fi.get());
|
|
}
|
|
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
learner->UpdateOneIter(i, p_dmat.get());
|
|
}
|
|
ASSERT_TRUE(data.HostCanWrite());
|
|
|
|
// pull data into device.
|
|
data = HostDeviceVector<Entry>(data.HostVector(), 0);
|
|
data.DeviceSpan();
|
|
ASSERT_FALSE(data.HostCanWrite());
|
|
|
|
// another new learner
|
|
learner = std::unique_ptr<Learner>(Learner::Create({p_dmat}));
|
|
learner->SetParams(Args{{"tree_method", "gpu_hist"}, {"gpu_id", "0"}});
|
|
for (size_t i = 0; i < 4; ++i) {
|
|
learner->UpdateOneIter(i, p_dmat.get());
|
|
}
|
|
// data is not pulled back into host
|
|
ASSERT_FALSE(data.HostCanWrite());
|
|
|
|
delete pp_dmat;
|
|
}
|
|
#endif // XGBOOST_USE_CUDA
|
|
|
|
// Some other parts of test are in `Tree.Json_IO'.
|
|
TEST(GBTree, Json_IO) {
|
|
size_t constexpr kRows = 16, kCols = 16;
|
|
|
|
LearnerModelParam mparam;
|
|
mparam.num_feature = kCols;
|
|
mparam.num_output_group = 1;
|
|
mparam.base_score = 0.5;
|
|
|
|
GenericParameter gparam;
|
|
gparam.Init(Args{});
|
|
|
|
std::unique_ptr<GradientBooster> gbm {
|
|
CreateTrainedGBM("gbtree", Args{}, kRows, kCols, &mparam, &gparam) };
|
|
|
|
Json model {Object()};
|
|
model["model"] = Object();
|
|
auto& j_model = model["model"];
|
|
|
|
model["config"] = Object();
|
|
auto& j_param = model["config"];
|
|
|
|
gbm->SaveModel(&j_model);
|
|
gbm->SaveConfig(&j_param);
|
|
|
|
std::string model_str;
|
|
Json::Dump(model, &model_str);
|
|
|
|
model = Json::Load({model_str.c_str(), model_str.size()});
|
|
ASSERT_EQ(get<String>(model["model"]["name"]), "gbtree");
|
|
|
|
auto const& gbtree_model = model["model"]["model"];
|
|
ASSERT_EQ(get<Array>(gbtree_model["trees"]).size(), 1);
|
|
ASSERT_EQ(get<Integer>(get<Object>(get<Array>(gbtree_model["trees"]).front()).at("id")), 0);
|
|
ASSERT_EQ(get<Array>(gbtree_model["tree_info"]).size(), 1);
|
|
|
|
auto j_train_param = model["config"]["gbtree_train_param"];
|
|
ASSERT_EQ(get<String>(j_train_param["num_parallel_tree"]), "1");
|
|
}
|
|
|
|
TEST(Dart, Json_IO) {
|
|
size_t constexpr kRows = 16, kCols = 16;
|
|
|
|
LearnerModelParam mparam;
|
|
mparam.num_feature = kCols;
|
|
mparam.base_score = 0.5;
|
|
mparam.num_output_group = 1;
|
|
|
|
GenericParameter gparam;
|
|
gparam.Init(Args{});
|
|
|
|
std::unique_ptr<GradientBooster> gbm {
|
|
CreateTrainedGBM("dart", Args{}, kRows, kCols, &mparam, &gparam) };
|
|
|
|
Json model {Object()};
|
|
model["model"] = Object();
|
|
auto& j_model = model["model"];
|
|
model["config"] = Object();
|
|
|
|
auto& j_param = model["config"];
|
|
|
|
gbm->SaveModel(&j_model);
|
|
gbm->SaveConfig(&j_param);
|
|
|
|
std::string model_str;
|
|
Json::Dump(model, &model_str);
|
|
|
|
model = Json::Load({model_str.c_str(), model_str.size()});
|
|
|
|
ASSERT_EQ(get<String>(model["model"]["name"]), "dart") << model;
|
|
ASSERT_EQ(get<String>(model["config"]["name"]), "dart");
|
|
ASSERT_TRUE(IsA<Object>(model["model"]["gbtree"]));
|
|
ASSERT_NE(get<Array>(model["model"]["weight_drop"]).size(), 0);
|
|
}
|
|
} // namespace xgboost
|