xgboost/tests/cpp/objective/test_lambdarank_obj.cu
2023-05-20 01:25:33 +02:00

174 lines
6.2 KiB
Plaintext

/**
* Copyright 2023 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <xgboost/context.h> // for Context
#include <cstdint> // for uint32_t
#include <vector> // for vector
#if defined(XGBOOST_USE_CUDA)
#include "../../../src/common/cuda_context.cuh" // for CUDAContext
#include "../../../src/objective/lambdarank_obj.cuh"
#elif defined(XGBOOST_USE_HIP)
#include "../../../src/common/cuda_context.hip.h" // for CUDAContext
#include "../../../src/objective/lambdarank_obj.hip.h"
#endif
#include "test_lambdarank_obj.h"
namespace xgboost::obj {
TEST(LambdaRank, GPUNDCGJsonIO) {
Context ctx;
ctx.gpu_id = 0;
TestNDCGJsonIO(&ctx);
}
TEST(LambdaRank, GPUMAPStat) {
Context ctx;
ctx.gpu_id = 0;
TestMAPStat(&ctx);
}
TEST(LambdaRank, GPUNDCGGPair) {
Context ctx;
ctx.gpu_id = 0;
TestNDCGGPair(&ctx);
}
void TestGPUMakePair() {
Context ctx;
ctx.gpu_id = 0;
MetaInfo info;
HostDeviceVector<float> predt;
InitMakePairTest(&ctx, &info, &predt);
ltr::LambdaRankParam param;
auto make_args = [&](std::shared_ptr<ltr::RankingCache> p_cache, auto rank_idx,
common::Span<std::size_t const> y_sorted_idx) {
linalg::Vector<double> dummy;
auto d = dummy.View(ctx.gpu_id);
linalg::Vector<GradientPair> dgpair;
auto dg = dgpair.View(ctx.gpu_id);
cuda_impl::KernelInputs args{d,
d,
d,
d,
p_cache->DataGroupPtr(&ctx),
p_cache->CUDAThreadsGroupPtr(),
rank_idx,
info.labels.View(ctx.gpu_id),
predt.ConstDeviceSpan(),
{},
dg,
nullptr,
y_sorted_idx,
0};
return args;
};
{
param.UpdateAllowUnknown(Args{{"lambdarank_pair_method", "topk"}});
auto p_cache = std::make_shared<ltr::NDCGCache>(&ctx, info, param);
auto rank_idx = p_cache->SortedIdx(&ctx, predt.ConstDeviceSpan());
ASSERT_EQ(p_cache->CUDAThreads(), 3568);
auto args = make_args(p_cache, rank_idx, {});
auto n_pairs = p_cache->Param().NumPair();
auto make_pair = cuda_impl::MakePairsOp<true>{args};
dh::LaunchN(p_cache->CUDAThreads(), ctx.CUDACtx()->Stream(),
[=] XGBOOST_DEVICE(std::size_t idx) {
auto [i, j] = make_pair(idx, 0);
SPAN_CHECK(j > i);
SPAN_CHECK(i < n_pairs);
});
}
{
param.UpdateAllowUnknown(Args{{"lambdarank_pair_method", "mean"}});
auto p_cache = std::make_shared<ltr::NDCGCache>(&ctx, info, param);
auto rank_idx = p_cache->SortedIdx(&ctx, predt.ConstDeviceSpan());
auto y_sorted_idx = cuda_impl::SortY(&ctx, info, rank_idx, p_cache);
ASSERT_FALSE(param.HasTruncation());
ASSERT_EQ(p_cache->CUDAThreads(), info.num_row_ * param.NumPair());
auto args = make_args(p_cache, rank_idx, y_sorted_idx);
auto make_pair = cuda_impl::MakePairsOp<false>{args};
auto n_pairs = p_cache->Param().NumPair();
ASSERT_EQ(n_pairs, 1);
dh::LaunchN(
p_cache->CUDAThreads(), ctx.CUDACtx()->Stream(), [=] XGBOOST_DEVICE(std::size_t idx) {
idx = 97;
auto [i, j] = make_pair(idx, 0);
// Not in the same bucket
SPAN_CHECK(make_pair.args.labels(rank_idx[i]) != make_pair.args.labels(rank_idx[j]));
});
}
{
param.UpdateAllowUnknown(Args{{"lambdarank_num_pair_per_sample", "2"}});
auto p_cache = std::make_shared<ltr::NDCGCache>(&ctx, info, param);
auto rank_idx = p_cache->SortedIdx(&ctx, predt.ConstDeviceSpan());
auto y_sorted_idx = cuda_impl::SortY(&ctx, info, rank_idx, p_cache);
auto args = make_args(p_cache, rank_idx, y_sorted_idx);
auto make_pair = cuda_impl::MakePairsOp<false>{args};
dh::LaunchN(
p_cache->CUDAThreads(), ctx.CUDACtx()->Stream(), [=] XGBOOST_DEVICE(std::size_t idx) {
auto [i, j] = make_pair(idx, 0);
// Not in the same bucket
SPAN_CHECK(make_pair.args.labels(rank_idx[i]) != make_pair.args.labels(rank_idx[j]));
});
ASSERT_EQ(param.NumPair(), 2);
ASSERT_EQ(p_cache->CUDAThreads(), info.num_row_ * param.NumPair());
}
}
TEST(LambdaRank, GPUMakePair) { TestGPUMakePair(); }
TEST(LambdaRank, GPUUnbiasedNDCG) {
Context ctx;
ctx.gpu_id = 0;
TestUnbiasedNDCG(&ctx);
}
template <typename CountFunctor>
void RankItemCountImpl(std::vector<std::uint32_t> const &sorted_items, CountFunctor f,
std::uint32_t find_val, std::uint32_t exp_val) {
EXPECT_NE(std::find(sorted_items.begin(), sorted_items.end(), find_val), sorted_items.end());
EXPECT_EQ(f(&sorted_items[0], sorted_items.size(), find_val), exp_val);
}
TEST(LambdaRank, RankItemCountOnLeft) {
// Items sorted descendingly
std::vector<std::uint32_t> sorted_items{10, 10, 6, 4, 4, 4, 4, 1, 1, 1, 1, 1, 0};
auto wrapper = [](auto const &...args) { return cuda_impl::CountNumItemsToTheLeftOf(args...); };
RankItemCountImpl(sorted_items, wrapper, 10, static_cast<uint32_t>(0));
RankItemCountImpl(sorted_items, wrapper, 6, static_cast<uint32_t>(2));
RankItemCountImpl(sorted_items, wrapper, 4, static_cast<uint32_t>(3));
RankItemCountImpl(sorted_items, wrapper, 1, static_cast<uint32_t>(7));
RankItemCountImpl(sorted_items, wrapper, 0, static_cast<uint32_t>(12));
}
TEST(LambdaRank, RankItemCountOnRight) {
// Items sorted descendingly
std::vector<std::uint32_t> sorted_items{10, 10, 6, 4, 4, 4, 4, 1, 1, 1, 1, 1, 0};
auto wrapper = [](auto const &...args) { return cuda_impl::CountNumItemsToTheRightOf(args...); };
RankItemCountImpl(sorted_items, wrapper, 10, static_cast<uint32_t>(11));
RankItemCountImpl(sorted_items, wrapper, 6, static_cast<uint32_t>(10));
RankItemCountImpl(sorted_items, wrapper, 4, static_cast<uint32_t>(6));
RankItemCountImpl(sorted_items, wrapper, 1, static_cast<uint32_t>(1));
RankItemCountImpl(sorted_items, wrapper, 0, static_cast<uint32_t>(0));
}
TEST(LambdaRank, GPUMAPGPair) {
Context ctx;
ctx.gpu_id = 0;
TestMAPGPair(&ctx);
}
} // namespace xgboost::obj