xgboost/tests/python/test_callback.py
Jiaming Yuan c75a3bc0a9
[breaking] [jvm-packages] Remove rabit check point. (#9599)
- Add `numBoostedRound` to jvm packages
- Remove rabit checkpoint version.
- Change the starting version of training continuation in JVM [breaking].
- Redefine the checkpoint version policy in jvm package. [breaking]
- Rename the Python check point callback parameter. [breaking]
- Unifies the checkpoint policy between Python and JVM.
2023-09-26 18:06:34 +08:00

506 lines
19 KiB
Python

import json
import os
import tempfile
from typing import Union
import pytest
import xgboost as xgb
from xgboost import testing as tm
# We use the dataset for tests.
pytestmark = pytest.mark.skipif(**tm.no_sklearn())
class TestCallbacks:
@classmethod
def setup_class(cls):
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
cls.X = X
cls.y = y
split = int(X.shape[0]*0.8)
cls.X_train = X[: split, ...]
cls.y_train = y[: split, ...]
cls.X_valid = X[split:, ...]
cls.y_valid = y[split:, ...]
def run_evaluation_monitor(
self,
D_train: xgb.DMatrix,
D_valid: xgb.DMatrix,
rounds: int,
verbose_eval: Union[bool, int]
):
def check_output(output: str) -> None:
if int(verbose_eval) == 1:
# Should print each iteration info
assert len(output.split('\n')) == rounds
elif int(verbose_eval) > rounds:
# Should print first and latest iteration info
assert len(output.split('\n')) == 2
else:
# Should print info by each period additionaly to first and latest
# iteration
num_periods = rounds // int(verbose_eval)
# Extra information is required for latest iteration
is_extra_info_required = num_periods * int(verbose_eval) < (rounds - 1)
assert len(output.split('\n')) == (
1 + num_periods + int(is_extra_info_required)
)
evals_result: xgb.callback.TrainingCallback.EvalsLog = {}
params = {'objective': 'binary:logistic', 'eval_metric': 'error'}
with tm.captured_output() as (out, err):
xgb.train(
params, D_train,
evals=[(D_train, 'Train'), (D_valid, 'Valid')],
num_boost_round=rounds,
evals_result=evals_result,
verbose_eval=verbose_eval,
)
output: str = out.getvalue().strip()
check_output(output)
with tm.captured_output() as (out, err):
xgb.cv(params, D_train, num_boost_round=rounds, verbose_eval=verbose_eval)
output = out.getvalue().strip()
check_output(output)
def test_evaluation_monitor(self):
D_train = xgb.DMatrix(self.X_train, self.y_train)
D_valid = xgb.DMatrix(self.X_valid, self.y_valid)
evals_result = {}
rounds = 10
xgb.train({'objective': 'binary:logistic',
'eval_metric': 'error'}, D_train,
evals=[(D_train, 'Train'), (D_valid, 'Valid')],
num_boost_round=rounds,
evals_result=evals_result,
verbose_eval=True)
assert len(evals_result['Train']['error']) == rounds
assert len(evals_result['Valid']['error']) == rounds
self.run_evaluation_monitor(D_train, D_valid, rounds, True)
self.run_evaluation_monitor(D_train, D_valid, rounds, 2)
self.run_evaluation_monitor(D_train, D_valid, rounds, 4)
self.run_evaluation_monitor(D_train, D_valid, rounds, rounds + 1)
def test_early_stopping(self):
D_train = xgb.DMatrix(self.X_train, self.y_train)
D_valid = xgb.DMatrix(self.X_valid, self.y_valid)
evals_result = {}
rounds = 30
early_stopping_rounds = 5
booster = xgb.train({'objective': 'binary:logistic',
'eval_metric': 'error'}, D_train,
evals=[(D_train, 'Train'), (D_valid, 'Valid')],
num_boost_round=rounds,
evals_result=evals_result,
verbose_eval=True,
early_stopping_rounds=early_stopping_rounds)
dump = booster.get_dump(dump_format='json')
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
def test_early_stopping_custom_eval(self):
D_train = xgb.DMatrix(self.X_train, self.y_train)
D_valid = xgb.DMatrix(self.X_valid, self.y_valid)
early_stopping_rounds = 5
booster = xgb.train({'objective': 'binary:logistic',
'eval_metric': 'error',
'tree_method': 'hist'}, D_train,
evals=[(D_train, 'Train'), (D_valid, 'Valid')],
feval=tm.eval_error_metric,
num_boost_round=1000,
early_stopping_rounds=early_stopping_rounds,
verbose_eval=False)
dump = booster.get_dump(dump_format='json')
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
def test_early_stopping_customize(self):
D_train = xgb.DMatrix(self.X_train, self.y_train)
D_valid = xgb.DMatrix(self.X_valid, self.y_valid)
early_stopping_rounds = 5
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
metric_name='CustomErr',
data_name='Train')
# Specify which dataset and which metric should be used for early stopping.
booster = xgb.train(
{'objective': 'binary:logistic',
'eval_metric': ['error', 'rmse'],
'tree_method': 'hist'}, D_train,
evals=[(D_train, 'Train'), (D_valid, 'Valid')],
feval=tm.eval_error_metric,
num_boost_round=1000,
callbacks=[early_stop],
verbose_eval=False)
dump = booster.get_dump(dump_format='json')
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
assert len(early_stop.stopping_history['Train']['CustomErr']) == len(dump)
rounds = 100
early_stop = xgb.callback.EarlyStopping(
rounds=early_stopping_rounds,
metric_name='CustomErr',
data_name='Train',
min_delta=100,
save_best=True,
)
booster = xgb.train(
{
'objective': 'binary:logistic',
'eval_metric': ['error', 'rmse'],
'tree_method': 'hist'
},
D_train,
evals=[(D_train, 'Train'), (D_valid, 'Valid')],
feval=tm.eval_error_metric,
num_boost_round=rounds,
callbacks=[early_stop],
verbose_eval=False
)
# No iteration can be made with min_delta == 100
assert booster.best_iteration == 0
assert booster.num_boosted_rounds() == 1
def test_early_stopping_skl(self):
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
early_stopping_rounds = 5
cls = xgb.XGBClassifier(
early_stopping_rounds=early_stopping_rounds, eval_metric='error'
)
cls.fit(X, y, eval_set=[(X, y)])
booster = cls.get_booster()
dump = booster.get_dump(dump_format='json')
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
def test_early_stopping_custom_eval_skl(self):
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
early_stopping_rounds = 5
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds)
cls = xgb.XGBClassifier(
eval_metric=tm.eval_error_metric_skl, callbacks=[early_stop]
)
cls.fit(X, y, eval_set=[(X, y)])
booster = cls.get_booster()
dump = booster.get_dump(dump_format='json')
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
def test_early_stopping_save_best_model(self):
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
n_estimators = 100
early_stopping_rounds = 5
early_stop = xgb.callback.EarlyStopping(
rounds=early_stopping_rounds, save_best=True
)
cls = xgb.XGBClassifier(
n_estimators=n_estimators,
eval_metric=tm.eval_error_metric_skl,
callbacks=[early_stop]
)
cls.fit(X, y, eval_set=[(X, y)])
booster = cls.get_booster()
dump = booster.get_dump(dump_format='json')
assert len(dump) == booster.best_iteration + 1
early_stop = xgb.callback.EarlyStopping(
rounds=early_stopping_rounds, save_best=True
)
cls = xgb.XGBClassifier(
booster="gblinear",
n_estimators=10,
eval_metric=tm.eval_error_metric_skl,
callbacks=[early_stop],
)
with pytest.raises(ValueError):
cls.fit(X, y, eval_set=[(X, y)])
# No error
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
save_best=False)
xgb.XGBClassifier(
booster="gblinear",
n_estimators=10,
eval_metric=tm.eval_error_metric_skl,
callbacks=[early_stop],
).fit(X, y, eval_set=[(X, y)])
def test_early_stopping_continuation(self):
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
cls = xgb.XGBClassifier(eval_metric=tm.eval_error_metric_skl)
early_stopping_rounds = 5
early_stop = xgb.callback.EarlyStopping(
rounds=early_stopping_rounds, save_best=True
)
with pytest.warns(UserWarning):
cls.fit(X, y, eval_set=[(X, y)], callbacks=[early_stop])
booster = cls.get_booster()
assert booster.num_boosted_rounds() == booster.best_iteration + 1
with tempfile.TemporaryDirectory() as tmpdir:
path = os.path.join(tmpdir, 'model.json')
cls.save_model(path)
cls = xgb.XGBClassifier()
cls.load_model(path)
assert cls._Booster is not None
early_stopping_rounds = 3
cls.set_params(
eval_metric=tm.eval_error_metric_skl,
early_stopping_rounds=early_stopping_rounds,
)
cls.fit(X, y, eval_set=[(X, y)])
booster = cls.get_booster()
assert booster.num_boosted_rounds() == \
booster.best_iteration + early_stopping_rounds + 1
def test_deprecated(self):
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
early_stopping_rounds = 5
early_stop = xgb.callback.EarlyStopping(
rounds=early_stopping_rounds, save_best=True
)
clf = xgb.XGBClassifier(
eval_metric=tm.eval_error_metric_skl, callbacks=[early_stop]
)
with pytest.raises(ValueError, match=r".*set_params.*"):
clf.fit(X, y, eval_set=[(X, y)], callbacks=[early_stop])
def run_eta_decay(self, tree_method):
"""Test learning rate scheduler, used by both CPU and GPU tests."""
scheduler = xgb.callback.LearningRateScheduler
dtrain, dtest = tm.load_agaricus(__file__)
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 4
# learning_rates as a list
# init eta with 0 to check whether learning_rates work
param = {'max_depth': 2, 'eta': 0, 'verbosity': 0,
'objective': 'binary:logistic', 'eval_metric': 'error',
'tree_method': tree_method}
evals_result = {}
bst = xgb.train(
param,
dtrain,
num_round,
evals=watchlist,
callbacks=[scheduler([0.8, 0.7, 0.6, 0.5])],
evals_result=evals_result,
)
eval_errors_0 = list(map(float, evals_result['eval']['error']))
assert isinstance(bst, xgb.core.Booster)
# validation error should decrease, if eta > 0
assert eval_errors_0[0] > eval_errors_0[-1]
# init learning_rate with 0 to check whether learning_rates work
param = {'max_depth': 2, 'learning_rate': 0, 'verbosity': 0,
'objective': 'binary:logistic', 'eval_metric': 'error',
'tree_method': tree_method}
evals_result = {}
bst = xgb.train(
param,
dtrain,
num_round,
evals=watchlist,
callbacks=[scheduler([0.8, 0.7, 0.6, 0.5])],
evals_result=evals_result,
)
eval_errors_1 = list(map(float, evals_result['eval']['error']))
assert isinstance(bst, xgb.core.Booster)
# validation error should decrease, if learning_rate > 0
assert eval_errors_1[0] > eval_errors_1[-1]
# check if learning_rates override default value of eta/learning_rate
param = {
'max_depth': 2, 'verbosity': 0, 'objective': 'binary:logistic',
'eval_metric': 'error', 'tree_method': tree_method
}
evals_result = {}
bst = xgb.train(
param,
dtrain,
num_round,
evals=watchlist,
callbacks=[scheduler([0, 0, 0, 0])],
evals_result=evals_result,
)
eval_errors_2 = list(map(float, evals_result['eval']['error']))
assert isinstance(bst, xgb.core.Booster)
# validation error should not decrease, if eta/learning_rate = 0
assert eval_errors_2[0] == eval_errors_2[-1]
# learning_rates as a customized decay function
def eta_decay(ithround, num_boost_round=num_round):
return num_boost_round / (ithround + 1)
evals_result = {}
bst = xgb.train(
param,
dtrain,
num_round,
evals=watchlist,
callbacks=[scheduler(eta_decay)],
evals_result=evals_result,
)
eval_errors_3 = list(map(float, evals_result['eval']['error']))
assert isinstance(bst, xgb.core.Booster)
assert eval_errors_3[0] == eval_errors_2[0]
for i in range(1, len(eval_errors_0)):
assert eval_errors_3[i] != eval_errors_2[i]
xgb.cv(param, dtrain, num_round, callbacks=[scheduler(eta_decay)])
def run_eta_decay_leaf_output(self, tree_method: str, objective: str) -> None:
# check decay has effect on leaf output.
num_round = 4
scheduler = xgb.callback.LearningRateScheduler
dtrain, dtest = tm.load_agaricus(__file__)
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
param = {
"max_depth": 2,
"objective": objective,
"eval_metric": "error",
"tree_method": tree_method,
}
if objective == "reg:quantileerror":
param["quantile_alpha"] = 0.3
def eta_decay_0(i):
return num_round / (i + 1)
bst0 = xgb.train(
param,
dtrain,
num_round,
evals=watchlist,
callbacks=[scheduler(eta_decay_0)],
)
def eta_decay_1(i: int) -> float:
if i > 1:
return 5.0
return num_round / (i + 1)
bst1 = xgb.train(
param,
dtrain,
num_round,
evals=watchlist,
callbacks=[scheduler(eta_decay_1)],
)
bst_json0 = bst0.save_raw(raw_format="json")
bst_json1 = bst1.save_raw(raw_format="json")
j0 = json.loads(bst_json0)
j1 = json.loads(bst_json1)
tree_2th_0 = j0["learner"]["gradient_booster"]["model"]["trees"][2]
tree_2th_1 = j1["learner"]["gradient_booster"]["model"]["trees"][2]
assert tree_2th_0["base_weights"] == tree_2th_1["base_weights"]
assert tree_2th_0["split_conditions"] == tree_2th_1["split_conditions"]
tree_3th_0 = j0["learner"]["gradient_booster"]["model"]["trees"][3]
tree_3th_1 = j1["learner"]["gradient_booster"]["model"]["trees"][3]
assert tree_3th_0["base_weights"] != tree_3th_1["base_weights"]
assert tree_3th_0["split_conditions"] != tree_3th_1["split_conditions"]
@pytest.mark.parametrize("tree_method", ["hist", "approx", "approx"])
def test_eta_decay(self, tree_method):
self.run_eta_decay(tree_method)
@pytest.mark.parametrize(
"tree_method,objective",
[
("hist", "binary:logistic"),
("hist", "reg:absoluteerror"),
("hist", "reg:quantileerror"),
("approx", "binary:logistic"),
("approx", "reg:absoluteerror"),
("approx", "reg:quantileerror"),
],
)
def test_eta_decay_leaf_output(self, tree_method: str, objective: str) -> None:
self.run_eta_decay_leaf_output(tree_method, objective)
def test_check_point(self):
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
m = xgb.DMatrix(X, y)
with tempfile.TemporaryDirectory() as tmpdir:
check_point = xgb.callback.TrainingCheckPoint(
directory=tmpdir, interval=1, name="model"
)
xgb.train(
{"objective": "binary:logistic"},
m,
num_boost_round=10,
verbose_eval=False,
callbacks=[check_point],
)
for i in range(1, 10):
assert os.path.exists(os.path.join(tmpdir, "model_" + str(i) + ".json"))
check_point = xgb.callback.TrainingCheckPoint(
directory=tmpdir, interval=1, as_pickle=True, name="model"
)
xgb.train(
{"objective": "binary:logistic"},
m,
num_boost_round=10,
verbose_eval=False,
callbacks=[check_point],
)
for i in range(1, 10):
assert os.path.exists(os.path.join(tmpdir, "model_" + str(i) + ".pkl"))
def test_callback_list(self):
X, y = tm.data.get_california_housing()
m = xgb.DMatrix(X, y)
callbacks = [xgb.callback.EarlyStopping(rounds=10)]
for i in range(4):
xgb.train(
{"objective": "reg:squarederror", "eval_metric": "rmse"},
m,
evals=[(m, "Train")],
num_boost_round=1,
verbose_eval=True,
callbacks=callbacks,
)
assert len(callbacks) == 1
def test_attribute_error(self) -> None:
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
clf = xgb.XGBClassifier(n_estimators=8)
clf.fit(X, y, eval_set=[(X, y)])
with pytest.raises(AttributeError, match="early stopping is used"):
clf.best_iteration
with pytest.raises(AttributeError, match="early stopping is used"):
clf.best_score
booster = clf.get_booster()
with pytest.raises(AttributeError, match="early stopping is used"):
booster.best_iteration
with pytest.raises(AttributeError, match="early stopping is used"):
booster.best_score