xgboost/src/objective/regression_obj.cu
2023-12-13 21:06:28 -08:00

715 lines
27 KiB
Plaintext

/**
* Copyright 2015-2023 by XGBoost Contributors
* \file regression_obj.cu
* \brief Definition of single-value regression and classification objectives.
* \author Tianqi Chen, Kailong Chen
*/
#include <dmlc/omp.h>
#include <algorithm>
#include <cmath>
#include <cstdint> // std::int32_t
#include <memory>
#include <vector>
#include "../common/common.h"
#include "../common/linalg_op.h"
#include "../common/numeric.h" // Reduce
#include "../common/optional_weight.h" // OptionalWeights
#include "../common/pseudo_huber.h"
#include "../common/stats.h"
#include "../common/threading_utils.h"
#include "../common/transform.h"
#include "./regression_loss.h"
#include "adaptive.h"
#include "init_estimation.h" // FitIntercept
#include "xgboost/base.h"
#include "xgboost/context.h" // Context
#include "xgboost/data.h" // MetaInfo
#include "xgboost/host_device_vector.h"
#include "xgboost/json.h"
#include "xgboost/linalg.h"
#include "xgboost/logging.h"
#include "xgboost/objective.h" // ObjFunction
#include "xgboost/parameter.h"
#include "xgboost/span.h"
#include "xgboost/tree_model.h" // RegTree
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
#include "../common/cuda_context.cuh" // for CUDAContext
#include "../common/device_helpers.cuh"
#include "../common/linalg_op.cuh"
#endif // defined(XGBOOST_USE_CUDA), defined(XGBOOST_USE_HIP)
namespace xgboost::obj {
namespace {
void CheckRegInputs(MetaInfo const& info, HostDeviceVector<bst_float> const& preds) {
CheckInitInputs(info);
CHECK_EQ(info.labels.Size(), preds.Size()) << "Invalid shape of labels.";
}
} // anonymous namespace
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
DMLC_REGISTRY_FILE_TAG(regression_obj_gpu);
#endif // defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
struct RegLossParam : public XGBoostParameter<RegLossParam> {
float scale_pos_weight;
// declare parameters
DMLC_DECLARE_PARAMETER(RegLossParam) {
DMLC_DECLARE_FIELD(scale_pos_weight).set_default(1.0f).set_lower_bound(0.0f)
.describe("Scale the weight of positive examples by this factor");
}
};
template<typename Loss>
class RegLossObj : public FitIntercept {
protected:
HostDeviceVector<float> additional_input_;
public:
void ValidateLabel(MetaInfo const& info) {
auto label = info.labels.View(ctx_->Device());
auto valid = ctx_->DispatchDevice(
[&] {
return std::all_of(linalg::cbegin(label), linalg::cend(label),
[](float y) -> bool { return Loss::CheckLabel(y); });
},
[&] {
#if defined(XGBOOST_USE_CUDA) || defined(XGBOOST_USE_HIP)
auto cuctx = ctx_->CUDACtx();
auto it = dh::MakeTransformIterator<bool>(
thrust::make_counting_iterator(0ul), [=] XGBOOST_DEVICE(std::size_t i) -> bool {
auto [m, n] = linalg::UnravelIndex(i, label.Shape());
return Loss::CheckLabel(label(m, n));
});
return dh::Reduce(cuctx->CTP(), it, it + label.Size(), true, thrust::logical_and<>{});
#else
common::AssertGPUSupport();
return false;
#endif // defined(XGBOOST_USE_CUDA)
});
if (!valid) {
LOG(FATAL) << Loss::LabelErrorMsg();
}
}
// 0 - scale_pos_weight, 1 - is_null_weight
RegLossObj(): additional_input_(2) {}
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.UpdateAllowUnknown(args);
}
[[nodiscard]] ObjInfo Task() const override { return Loss::Info(); }
[[nodiscard]] bst_target_t Targets(MetaInfo const& info) const override {
// Multi-target regression.
return std::max(static_cast<std::size_t>(1), info.labels.Shape(1));
}
void GetGradient(const HostDeviceVector<bst_float>& preds, const MetaInfo& info,
std::int32_t iter, linalg::Matrix<GradientPair>* out_gpair) override {
CheckRegInputs(info, preds);
if (iter == 0) {
ValidateLabel(info);
}
size_t const ndata = preds.Size();
out_gpair->SetDevice(ctx_->Device());
auto device = ctx_->Device();
bool is_null_weight = info.weights_.Size() == 0;
auto scale_pos_weight = param_.scale_pos_weight;
additional_input_.HostVector().begin()[0] = scale_pos_weight;
additional_input_.HostVector().begin()[1] = is_null_weight;
const size_t nthreads = ctx_->Threads();
bool on_device = device.IsCUDA();
// On CPU we run the transformation each thread processing a contigious block of data
// for better performance.
const size_t n_data_blocks = std::max(static_cast<size_t>(1), (on_device ? ndata : nthreads));
const size_t block_size = ndata / n_data_blocks + !!(ndata % n_data_blocks);
auto const n_targets = this->Targets(info);
out_gpair->Reshape(info.num_row_, n_targets);
common::Transform<>::Init(
[block_size, ndata, n_targets] XGBOOST_DEVICE(
size_t data_block_idx, common::Span<float> _additional_input,
common::Span<GradientPair> _out_gpair,
common::Span<const bst_float> _preds,
common::Span<const bst_float> _labels,
common::Span<const bst_float> _weights) {
const bst_float* preds_ptr = _preds.data();
const bst_float* labels_ptr = _labels.data();
const bst_float* weights_ptr = _weights.data();
GradientPair* out_gpair_ptr = _out_gpair.data();
const size_t begin = data_block_idx*block_size;
const size_t end = std::min(ndata, begin + block_size);
const float _scale_pos_weight = _additional_input[0];
const bool _is_null_weight = _additional_input[1];
for (size_t idx = begin; idx < end; ++idx) {
bst_float p = Loss::PredTransform(preds_ptr[idx]);
bst_float w = _is_null_weight ? 1.0f : weights_ptr[idx / n_targets];
bst_float label = labels_ptr[idx];
if (label == 1.0f) {
w *= _scale_pos_weight;
}
out_gpair_ptr[idx] = GradientPair(Loss::FirstOrderGradient(p, label) * w,
Loss::SecondOrderGradient(p, label) * w);
}
},
common::Range{0, static_cast<int64_t>(n_data_blocks)}, nthreads, device)
.Eval(&additional_input_, out_gpair->Data(), &preds, info.labels.Data(),
&info.weights_);
}
public:
[[nodiscard]] const char* DefaultEvalMetric() const override {
return Loss::DefaultEvalMetric();
}
void PredTransform(HostDeviceVector<float> *io_preds) const override {
common::Transform<>::Init(
[] XGBOOST_DEVICE(size_t _idx, common::Span<float> _preds) {
_preds[_idx] = Loss::PredTransform(_preds[_idx]);
},
common::Range{0, static_cast<int64_t>(io_preds->Size())}, this->ctx_->Threads(),
io_preds->Device())
.Eval(io_preds);
}
[[nodiscard]] float ProbToMargin(float base_score) const override {
return Loss::ProbToMargin(base_score);
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String(Loss::Name());
out["reg_loss_param"] = ToJson(param_);
}
void LoadConfig(Json const& in) override {
FromJson(in["reg_loss_param"], &param_);
}
protected:
RegLossParam param_;
};
// register the objective functions
DMLC_REGISTER_PARAMETER(RegLossParam);
XGBOOST_REGISTER_OBJECTIVE(SquaredLossRegression, LinearSquareLoss::Name())
.describe("Regression with squared error.")
.set_body([]() { return new RegLossObj<LinearSquareLoss>(); });
XGBOOST_REGISTER_OBJECTIVE(SquareLogError, SquaredLogError::Name())
.describe("Regression with root mean squared logarithmic error.")
.set_body([]() { return new RegLossObj<SquaredLogError>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRegression, LogisticRegression::Name())
.describe("Logistic regression for probability regression task.")
.set_body([]() { return new RegLossObj<LogisticRegression>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticClassification, LogisticClassification::Name())
.describe("Logistic regression for binary classification task.")
.set_body([]() { return new RegLossObj<LogisticClassification>(); });
XGBOOST_REGISTER_OBJECTIVE(LogisticRaw, LogisticRaw::Name())
.describe("Logistic regression for classification, output score "
"before logistic transformation.")
.set_body([]() { return new RegLossObj<LogisticRaw>(); });
XGBOOST_REGISTER_OBJECTIVE(GammaRegression, GammaDeviance::Name())
.describe("Gamma regression using the gamma deviance loss with log link.")
.set_body([]() { return new RegLossObj<GammaDeviance>(); });
// Deprecated functions
XGBOOST_REGISTER_OBJECTIVE(LinearRegression, "reg:linear")
.describe("Regression with squared error.")
.set_body([]() {
LOG(WARNING) << "reg:linear is now deprecated in favor of reg:squarederror.";
return new RegLossObj<LinearSquareLoss>(); });
// End deprecated
class PseudoHuberRegression : public FitIntercept {
PesudoHuberParam param_;
public:
void Configure(Args const& args) override { param_.UpdateAllowUnknown(args); }
[[nodiscard]] ObjInfo Task() const override { return ObjInfo::kRegression; }
[[nodiscard]] bst_target_t Targets(MetaInfo const& info) const override {
return std::max(static_cast<std::size_t>(1), info.labels.Shape(1));
}
void GetGradient(HostDeviceVector<bst_float> const& preds, const MetaInfo& info, int /*iter*/,
linalg::Matrix<GradientPair>* out_gpair) override {
CheckRegInputs(info, preds);
auto slope = param_.huber_slope;
CHECK_NE(slope, 0.0) << "slope for pseudo huber cannot be 0.";
auto labels = info.labels.View(ctx_->Device());
out_gpair->SetDevice(ctx_->Device());
out_gpair->Reshape(info.num_row_, this->Targets(info));
auto gpair = out_gpair->View(ctx_->Device());
preds.SetDevice(ctx_->Device());
auto predt = linalg::MakeVec(&preds);
info.weights_.SetDevice(ctx_->Device());
common::OptionalWeights weight{ctx_->IsCUDA() ? info.weights_.ConstDeviceSpan()
: info.weights_.ConstHostSpan()};
linalg::ElementWiseKernel(ctx_, labels, [=] XGBOOST_DEVICE(size_t i, float const y) mutable {
auto sample_id = std::get<0>(linalg::UnravelIndex(i, labels.Shape()));
const float z = predt(i) - y;
const float scale_sqrt = std::sqrt(1 + common::Sqr(z) / common::Sqr(slope));
float grad = z / scale_sqrt;
auto scale = common::Sqr(slope) + common::Sqr(z);
float hess = common::Sqr(slope) / (scale * scale_sqrt);
auto w = weight[sample_id];
gpair(i) = {grad * w, hess * w};
});
}
[[nodiscard]] const char* DefaultEvalMetric() const override { return "mphe"; }
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String("reg:pseudohubererror");
out["pseudo_huber_param"] = ToJson(param_);
}
void LoadConfig(Json const& in) override {
auto const& config = get<Object const>(in);
if (config.find("pseudo_huber_param") == config.cend()) {
// The parameter is added in 1.6.
return;
}
FromJson(in["pseudo_huber_param"], &param_);
}
[[nodiscard]] Json DefaultMetricConfig() const override {
CHECK(param_.GetInitialised());
Json config{Object{}};
config["name"] = String{this->DefaultEvalMetric()};
config["pseudo_huber_param"] = ToJson(param_);
return config;
}
};
XGBOOST_REGISTER_OBJECTIVE(PseudoHuberRegression, "reg:pseudohubererror")
.describe("Regression Pseudo Huber error.")
.set_body([]() { return new PseudoHuberRegression(); });
// declare parameter
struct PoissonRegressionParam : public XGBoostParameter<PoissonRegressionParam> {
float max_delta_step;
DMLC_DECLARE_PARAMETER(PoissonRegressionParam) {
DMLC_DECLARE_FIELD(max_delta_step).set_lower_bound(0.0f).set_default(0.7f)
.describe("Maximum delta step we allow each weight estimation to be." \
" This parameter is required for possion regression.");
}
};
// poisson regression for count
class PoissonRegression : public FitIntercept {
public:
// declare functions
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.UpdateAllowUnknown(args);
}
[[nodiscard]] ObjInfo Task() const override { return ObjInfo::kRegression; }
void GetGradient(const HostDeviceVector<bst_float>& preds, const MetaInfo& info, int,
linalg::Matrix<GradientPair>* out_gpair) override {
CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty";
CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided";
size_t const ndata = preds.Size();
out_gpair->SetDevice(ctx_->Device());
out_gpair->Reshape(info.num_row_, this->Targets(info));
auto device = ctx_->Device();
label_correct_.Resize(1);
label_correct_.Fill(1);
bool is_null_weight = info.weights_.Size() == 0;
if (!is_null_weight) {
CHECK_EQ(info.weights_.Size(), ndata)
<< "Number of weights should be equal to number of data points.";
}
bst_float max_delta_step = param_.max_delta_step;
common::Transform<>::Init(
[=] XGBOOST_DEVICE(size_t _idx,
common::Span<int> _label_correct,
common::Span<GradientPair> _out_gpair,
common::Span<const bst_float> _preds,
common::Span<const bst_float> _labels,
common::Span<const bst_float> _weights) {
bst_float p = _preds[_idx];
bst_float w = is_null_weight ? 1.0f : _weights[_idx];
bst_float y = _labels[_idx];
if (y < 0.0f) {
_label_correct[0] = 0;
}
_out_gpair[_idx] = GradientPair{(expf(p) - y) * w,
expf(p + max_delta_step) * w};
},
common::Range{0, static_cast<int64_t>(ndata)}, this->ctx_->Threads(), device).Eval(
&label_correct_, out_gpair->Data(), &preds, info.labels.Data(), &info.weights_);
// copy "label correct" flags back to host
std::vector<int>& label_correct_h = label_correct_.HostVector();
for (auto const flag : label_correct_h) {
if (flag == 0) {
LOG(FATAL) << "PoissonRegression: label must be nonnegative";
}
}
}
void PredTransform(HostDeviceVector<bst_float> *io_preds) const override {
common::Transform<>::Init(
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
_preds[_idx] = expf(_preds[_idx]);
},
common::Range{0, static_cast<int64_t>(io_preds->Size())}, this->ctx_->Threads(),
io_preds->Device())
.Eval(io_preds);
}
void EvalTransform(HostDeviceVector<bst_float> *io_preds) override {
PredTransform(io_preds);
}
[[nodiscard]] float ProbToMargin(bst_float base_score) const override {
return std::log(base_score);
}
[[nodiscard]] const char* DefaultEvalMetric() const override {
return "poisson-nloglik";
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String("count:poisson");
out["poisson_regression_param"] = ToJson(param_);
}
void LoadConfig(Json const& in) override {
FromJson(in["poisson_regression_param"], &param_);
}
private:
PoissonRegressionParam param_;
HostDeviceVector<int> label_correct_;
};
// register the objective functions
DMLC_REGISTER_PARAMETER(PoissonRegressionParam);
XGBOOST_REGISTER_OBJECTIVE(PoissonRegression, "count:poisson")
.describe("Poisson regression for count data.")
.set_body([]() { return new PoissonRegression(); });
// cox regression for survival data (negative values mean they are censored)
class CoxRegression : public FitIntercept {
public:
void Configure(Args const&) override {}
[[nodiscard]] ObjInfo Task() const override { return ObjInfo::kRegression; }
void GetGradient(const HostDeviceVector<bst_float>& preds, const MetaInfo& info, int,
linalg::Matrix<GradientPair>* out_gpair) override {
CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty";
CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided";
const auto& preds_h = preds.HostVector();
out_gpair->Reshape(info.num_row_, this->Targets(info));
auto gpair = out_gpair->HostView();
const std::vector<size_t> &label_order = info.LabelAbsSort(ctx_);
const omp_ulong ndata = static_cast<omp_ulong>(preds_h.size()); // NOLINT(*)
const bool is_null_weight = info.weights_.Size() == 0;
if (!is_null_weight) {
CHECK_EQ(info.weights_.Size(), ndata)
<< "Number of weights should be equal to number of data points.";
}
// pre-compute a sum
double exp_p_sum = 0; // we use double because we might need the precision with large datasets
for (omp_ulong i = 0; i < ndata; ++i) {
exp_p_sum += std::exp(preds_h[label_order[i]]);
}
// start calculating grad and hess
const auto& labels = info.labels.HostView();
double r_k = 0;
double s_k = 0;
double last_exp_p = 0.0;
double last_abs_y = 0.0;
double accumulated_sum = 0;
for (omp_ulong i = 0; i < ndata; ++i) { // NOLINT(*)
const size_t ind = label_order[i];
const double p = preds_h[ind];
const double exp_p = std::exp(p);
const double w = info.GetWeight(ind);
const double y = labels(ind);
const double abs_y = std::abs(y);
// only update the denominator after we move forward in time (labels are sorted)
// this is Breslow's method for ties
accumulated_sum += last_exp_p;
if (last_abs_y < abs_y) {
exp_p_sum -= accumulated_sum;
accumulated_sum = 0;
} else {
CHECK(last_abs_y <= abs_y) << "CoxRegression: labels must be in sorted order, " <<
"MetaInfo::LabelArgsort failed!";
}
if (y > 0) {
r_k += 1.0/exp_p_sum;
s_k += 1.0/(exp_p_sum*exp_p_sum);
}
const double grad = exp_p*r_k - static_cast<bst_float>(y > 0);
const double hess = exp_p * r_k - exp_p * exp_p * s_k;
gpair(ind) = GradientPair(grad * w, hess * w);
last_abs_y = abs_y;
last_exp_p = exp_p;
}
}
void PredTransform(HostDeviceVector<bst_float> *io_preds) const override {
std::vector<bst_float> &preds = io_preds->HostVector();
const long ndata = static_cast<long>(preds.size()); // NOLINT(*)
common::ParallelFor(ndata, ctx_->Threads(), [&](long j) { // NOLINT(*)
preds[j] = std::exp(preds[j]);
});
}
void EvalTransform(HostDeviceVector<bst_float> *io_preds) override {
PredTransform(io_preds);
}
[[nodiscard]] float ProbToMargin(bst_float base_score) const override {
return std::log(base_score);
}
[[nodiscard]] const char* DefaultEvalMetric() const override {
return "cox-nloglik";
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String("survival:cox");
}
void LoadConfig(Json const&) override {}
};
// register the objective function
XGBOOST_REGISTER_OBJECTIVE(CoxRegression, "survival:cox")
.describe("Cox regression for censored survival data (negative labels are considered censored).")
.set_body([]() { return new CoxRegression(); });
// declare parameter
struct TweedieRegressionParam : public XGBoostParameter<TweedieRegressionParam> {
float tweedie_variance_power;
DMLC_DECLARE_PARAMETER(TweedieRegressionParam) {
DMLC_DECLARE_FIELD(tweedie_variance_power).set_range(1.0f, 2.0f).set_default(1.5f)
.describe("Tweedie variance power. Must be between in range [1, 2).");
}
};
// tweedie regression
class TweedieRegression : public FitIntercept {
public:
// declare functions
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.UpdateAllowUnknown(args);
std::ostringstream os;
os << "tweedie-nloglik@" << param_.tweedie_variance_power;
metric_ = os.str();
}
[[nodiscard]] ObjInfo Task() const override { return ObjInfo::kRegression; }
void GetGradient(const HostDeviceVector<bst_float>& preds, const MetaInfo& info, std::int32_t,
linalg::Matrix<GradientPair>* out_gpair) override {
CHECK_NE(info.labels.Size(), 0U) << "label set cannot be empty";
CHECK_EQ(preds.Size(), info.labels.Size()) << "labels are not correctly provided";
const size_t ndata = preds.Size();
out_gpair->SetDevice(ctx_->Device());
out_gpair->Reshape(info.num_row_, this->Targets(info));
auto device = ctx_->Device();
label_correct_.Resize(1);
label_correct_.Fill(1);
const bool is_null_weight = info.weights_.Size() == 0;
if (!is_null_weight) {
CHECK_EQ(info.weights_.Size(), ndata)
<< "Number of weights should be equal to number of data points.";
}
const float rho = param_.tweedie_variance_power;
common::Transform<>::Init(
[=] XGBOOST_DEVICE(size_t _idx,
common::Span<int> _label_correct,
common::Span<GradientPair> _out_gpair,
common::Span<const bst_float> _preds,
common::Span<const bst_float> _labels,
common::Span<const bst_float> _weights) {
bst_float p = _preds[_idx];
bst_float w = is_null_weight ? 1.0f : _weights[_idx];
bst_float y = _labels[_idx];
if (y < 0.0f) {
_label_correct[0] = 0;
}
bst_float grad = -y * expf((1 - rho) * p) + expf((2 - rho) * p);
bst_float hess =
-y * (1 - rho) * \
std::exp((1 - rho) * p) + (2 - rho) * expf((2 - rho) * p);
_out_gpair[_idx] = GradientPair(grad * w, hess * w);
},
common::Range{0, static_cast<int64_t>(ndata), 1}, this->ctx_->Threads(), device)
.Eval(&label_correct_, out_gpair->Data(), &preds, info.labels.Data(), &info.weights_);
// copy "label correct" flags back to host
std::vector<int>& label_correct_h = label_correct_.HostVector();
for (auto const flag : label_correct_h) {
if (flag == 0) {
LOG(FATAL) << "TweedieRegression: label must be nonnegative";
}
}
}
void PredTransform(HostDeviceVector<bst_float> *io_preds) const override {
common::Transform<>::Init(
[] XGBOOST_DEVICE(size_t _idx, common::Span<bst_float> _preds) {
_preds[_idx] = expf(_preds[_idx]);
},
common::Range{0, static_cast<int64_t>(io_preds->Size())}, this->ctx_->Threads(),
io_preds->Device())
.Eval(io_preds);
}
[[nodiscard]] float ProbToMargin(bst_float base_score) const override {
return std::log(base_score);
}
[[nodiscard]] const char* DefaultEvalMetric() const override {
return metric_.c_str();
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String("reg:tweedie");
out["tweedie_regression_param"] = ToJson(param_);
}
void LoadConfig(Json const& in) override {
FromJson(in["tweedie_regression_param"], &param_);
}
private:
std::string metric_;
TweedieRegressionParam param_;
HostDeviceVector<int> label_correct_;
};
// register the objective functions
DMLC_REGISTER_PARAMETER(TweedieRegressionParam);
XGBOOST_REGISTER_OBJECTIVE(TweedieRegression, "reg:tweedie")
.describe("Tweedie regression for insurance data.")
.set_body([]() { return new TweedieRegression(); });
class MeanAbsoluteError : public ObjFunction {
public:
void Configure(Args const&) override {}
[[nodiscard]] ObjInfo Task() const override { return {ObjInfo::kRegression, true, true}; }
[[nodiscard]] bst_target_t Targets(MetaInfo const& info) const override {
return std::max(static_cast<std::size_t>(1), info.labels.Shape(1));
}
void GetGradient(HostDeviceVector<float> const& preds, const MetaInfo& info,
std::int32_t /*iter*/, linalg::Matrix<GradientPair>* out_gpair) override {
CheckRegInputs(info, preds);
auto labels = info.labels.View(ctx_->Device());
out_gpair->SetDevice(ctx_->Device());
out_gpair->Reshape(info.num_row_, this->Targets(info));
auto gpair = out_gpair->View(ctx_->Device());
preds.SetDevice(ctx_->Device());
auto predt = linalg::MakeVec(&preds);
info.weights_.SetDevice(ctx_->Device());
common::OptionalWeights weight{ctx_->IsCUDA() ? info.weights_.ConstDeviceSpan()
: info.weights_.ConstHostSpan()};
linalg::ElementWiseKernel(ctx_, labels, [=] XGBOOST_DEVICE(std::size_t i, float y) mutable {
auto sign = [](auto x) {
return (x > static_cast<decltype(x)>(0)) - (x < static_cast<decltype(x)>(0));
};
auto [sample_id, target_id] = linalg::UnravelIndex(i, labels.Shape());
auto grad = sign(predt(i) - y) * weight[sample_id];
auto hess = weight[sample_id];
gpair(sample_id, target_id) = GradientPair{grad, hess};
});
}
void InitEstimation(MetaInfo const& info, linalg::Tensor<float, 1>* base_margin) const override {
CheckInitInputs(info);
base_margin->Reshape(this->Targets(info));
double w{0.0};
if (info.weights_.Empty()) {
w = static_cast<double>(info.num_row_);
} else {
w = common::Reduce(ctx_, info.weights_);
}
if (info.num_row_ == 0) {
auto out = base_margin->HostView();
out(0) = 0;
} else {
linalg::Vector<float> temp;
common::Median(ctx_, info.labels, info.weights_, &temp);
common::Mean(ctx_, temp, base_margin);
}
CHECK_EQ(base_margin->Size(), 1);
auto out = base_margin->HostView();
// weighted avg
std::transform(linalg::cbegin(out), linalg::cend(out), linalg::begin(out),
[w](float v) { return v * w; });
collective::GlobalSum(info, &out.Values());
collective::GlobalSum(info, &w, 1);
if (common::CloseTo(w, 0.0)) {
// Mostly for handling empty dataset test.
LOG(WARNING) << "Sum of weights is close to 0.0, skipping base score estimation.";
out(0) = ObjFunction::DefaultBaseScore();
return;
}
std::transform(linalg::cbegin(out), linalg::cend(out), linalg::begin(out),
[w](float v) { return v / w; });
}
void UpdateTreeLeaf(HostDeviceVector<bst_node_t> const& position, MetaInfo const& info,
float learning_rate, HostDeviceVector<float> const& prediction,
std::int32_t group_idx, RegTree* p_tree) const override {
::xgboost::obj::UpdateTreeLeaf(ctx_, position, group_idx, info, learning_rate, prediction, 0.5,
p_tree);
}
[[nodiscard]] const char* DefaultEvalMetric() const override { return "mae"; }
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["name"] = String("reg:absoluteerror");
}
void LoadConfig(Json const& in) override {
CHECK_EQ(StringView{get<String const>(in["name"])}, StringView{"reg:absoluteerror"});
}
};
XGBOOST_REGISTER_OBJECTIVE(MeanAbsoluteError, "reg:absoluteerror")
.describe("Mean absoluate error.")
.set_body([]() { return new MeanAbsoluteError(); });
} // namespace xgboost::obj