xgboost/regrank/xgboost_regrank_obj.hpp
2014-05-08 19:31:32 -07:00

506 lines
25 KiB
C++

#ifndef XGBOOST_REGRANK_OBJ_HPP
#define XGBOOST_REGRANK_OBJ_HPP
/*!
* \file xgboost_regrank_obj.hpp
* \brief implementation of objective functions
* \author Tianqi Chen, Kailong Chen
*/
//#include "xgboost_regrank_sample.h"
#include <vector>
#include <functional>
#include "xgboost_regrank_sample.h"
#include "xgboost_regrank_utils.h"
namespace xgboost{
namespace regrank{
class RegressionObj : public IObjFunction{
public:
RegressionObj(void){
loss.loss_type = LossType::kLinearSquare;
}
virtual ~RegressionObj(){}
virtual void SetParam(const char *name, const char *val){
if( !strcmp( "loss_type", name ) ) loss.loss_type = atoi( val );
}
virtual void GetGradient(const std::vector<float>& preds,
const DMatrix::Info &info,
int iter,
std::vector<float> &grad,
std::vector<float> &hess ) {
utils::Assert( preds.size() == info.labels.size(), "label size predict size not match" );
grad.resize(preds.size()); hess.resize(preds.size());
const unsigned ndata = static_cast<unsigned>(preds.size());
#pragma omp parallel for schedule( static )
for (unsigned j = 0; j < ndata; ++j){
float p = loss.PredTransform(preds[j]);
grad[j] = loss.FirstOrderGradient(p, info.labels[j]) * info.GetWeight(j);
hess[j] = loss.SecondOrderGradient(p, info.labels[j]) * info.GetWeight(j);
}
}
virtual const char* DefaultEvalMetric(void) {
if( loss.loss_type == LossType::kLogisticClassify ) return "error";
else return "rmse";
}
virtual void PredTransform(std::vector<float> &preds){
const unsigned ndata = static_cast<unsigned>(preds.size());
#pragma omp parallel for schedule( static )
for (unsigned j = 0; j < ndata; ++j){
preds[j] = loss.PredTransform( preds[j] );
}
}
private:
LossType loss;
};
};
namespace regrank{
// simple softmax rak
class SoftmaxRankObj : public IObjFunction{
public:
SoftmaxRankObj(void){
}
virtual ~SoftmaxRankObj(){}
virtual void SetParam(const char *name, const char *val){
}
virtual void GetGradient(const std::vector<float>& preds,
const DMatrix::Info &info,
int iter,
std::vector<float> &grad,
std::vector<float> &hess ) {
utils::Assert( preds.size() == info.labels.size(), "label size predict size not match" );
grad.resize(preds.size()); hess.resize(preds.size());
const std::vector<unsigned> &gptr = info.group_ptr;
utils::Assert( gptr.size() != 0 && gptr.back() == preds.size(), "rank loss must have group file" );
const unsigned ngroup = static_cast<unsigned>( gptr.size() - 1 );
#pragma omp parallel
{
std::vector< float > rec;
#pragma omp for schedule(static)
for (unsigned k = 0; k < ngroup; ++k){
rec.clear();
int nhit = 0;
for(unsigned j = gptr[k]; j < gptr[k+1]; ++j ){
rec.push_back( preds[j] );
grad[j] = hess[j] = 0.0f;
nhit += info.labels[j];
}
Softmax( rec );
if( nhit == 1 ){
for(unsigned j = gptr[k]; j < gptr[k+1]; ++j ){
float p = rec[ j - gptr[k] ];
grad[j] = p - info.labels[j];
hess[j] = 2.0f * p * ( 1.0f - p );
}
}else{
utils::Assert( nhit == 0, "softmax does not allow multiple labels" );
}
}
}
}
virtual const char* DefaultEvalMetric(void) {
return "pre@1";
}
};
// simple softmax multi-class classification
class SoftmaxMultiClassObj : public IObjFunction{
public:
SoftmaxMultiClassObj(void){
nclass = 0;
}
virtual ~SoftmaxMultiClassObj(){}
virtual void SetParam(const char *name, const char *val){
if( !strcmp( "num_class", name ) ) nclass = atoi(val);
}
virtual void GetGradient(const std::vector<float>& preds,
const DMatrix::Info &info,
int iter,
std::vector<float> &grad,
std::vector<float> &hess ) {
utils::Assert( nclass != 0, "must set num_class to use softmax" );
utils::Assert( preds.size() == (size_t)nclass * info.labels.size(), "SoftmaxMultiClassObj: label size and pred size does not match" );
grad.resize(preds.size()); hess.resize(preds.size());
const unsigned ndata = static_cast<unsigned>(info.labels.size());
#pragma omp parallel
{
std::vector<float> rec(nclass);
#pragma omp for schedule(static)
for (unsigned j = 0; j < ndata; ++j){
for( int k = 0; k < nclass; ++ k ){
rec[k] = preds[j + k * ndata];
}
Softmax( rec );
int label = static_cast<int>(info.labels[j]);
if( label < 0 ){
label = -label - 1;
}
utils::Assert( label < nclass, "SoftmaxMultiClassObj: label exceed num_class" );
for( int k = 0; k < nclass; ++ k ){
float p = rec[ k ];
if( label == k ){
grad[j+k*ndata] = p - 1.0f;
}else{
grad[j+k*ndata] = p;
}
hess[j+k*ndata] = 2.0f * p * ( 1.0f - p );
}
}
}
}
virtual void PredTransform(std::vector<float> &preds){
utils::Assert( nclass != 0, "must set num_class to use softmax" );
utils::Assert( preds.size() % nclass == 0, "SoftmaxMultiClassObj: label size and pred size does not match" );
const unsigned ndata = static_cast<unsigned>(preds.size()/nclass);
#pragma omp parallel
{
std::vector<float> rec(nclass);
#pragma omp for schedule(static)
for (unsigned j = 0; j < ndata; ++j){
for( int k = 0; k < nclass; ++ k ){
rec[k] = preds[j + k * ndata];
}
preds[j] = FindMaxIndex( rec );
}
}
preds.resize( ndata );
}
virtual const char* DefaultEvalMetric(void) {
return "merror";
}
private:
int nclass;
};
};
namespace regrank{
// simple pairwise rank
class PairwiseRankObj : public IObjFunction{
public:
PairwiseRankObj(void){
loss.loss_type = LossType::kLinearSquare;
fix_list_weight = 0.0f;
}
virtual ~PairwiseRankObj(){}
virtual void SetParam(const char *name, const char *val){
if( !strcmp( "loss_type", name ) ) loss.loss_type = atoi( val );
if( !strcmp( "fix_list_weight", name ) ) fix_list_weight = (float)atof( val );
}
virtual void GetGradient(const std::vector<float>& preds,
const DMatrix::Info &info,
int iter,
std::vector<float> &grad,
std::vector<float> &hess ) {
utils::Assert( preds.size() == info.labels.size(), "label size predict size not match" );
grad.resize(preds.size()); hess.resize(preds.size());
const std::vector<unsigned> &gptr = info.group_ptr;
utils::Assert( gptr.size() != 0 && gptr.back() == preds.size(), "rank loss must have group file" );
const unsigned ngroup = static_cast<unsigned>( gptr.size() - 1 );
#pragma omp parallel
{
// parall construct, declare random number generator here, so that each
// thread use its own random number generator, seed by thread id and current iteration
random::Random rnd; rnd.Seed( iter * 1111 + omp_get_thread_num() );
std::vector< std::pair<float,unsigned> > rec;
#pragma omp for schedule(static)
for (unsigned k = 0; k < ngroup; ++k){
rec.clear();
for(unsigned j = gptr[k]; j < gptr[k+1]; ++j ){
rec.push_back( std::make_pair(info.labels[j], j) );
grad[j] = hess[j] = 0.0f;
}
std::sort( rec.begin(), rec.end(), CmpFirst );
// enumerate buckets with same label, for each item in the list, grab another sample randomly
for( unsigned i = 0; i < rec.size(); ){
unsigned j = i + 1;
while( j < rec.size() && rec[j].first == rec[i].first ) ++ j;
// bucket in [i,j), get a sample outside bucket
unsigned nleft = i, nright = rec.size() - j;
for( unsigned pid = i; pid < j; ++ pid ){
unsigned ridx = static_cast<int>( rnd.RandDouble() * (nleft+nright) );
if( ridx < nleft ){
// get the samples in left side, ridx is pos sample
this->AddGradient( rec[ridx].second, rec[pid].second, preds, grad, hess );
}else{
// get samples in right side, ridx is negsample
this->AddGradient( rec[pid].second, rec[ridx+j-i].second, preds, grad, hess );
}
}
i = j;
}
// rescale each gradient and hessian so that the list have constant weight
if( fix_list_weight != 0.0f ){
float scale = fix_list_weight / (gptr[k+1] - gptr[k]);
for(unsigned j = gptr[k]; j < gptr[k+1]; ++j ){
grad[j] *= scale; hess[j] *= scale;
}
}
}
}
}
virtual const char* DefaultEvalMetric(void) {
return "auc";
}
private:
inline void AddGradient( unsigned pid, unsigned nid,
const std::vector<float> &pred,
std::vector<float> &grad,
std::vector<float> &hess ){
float p = loss.PredTransform( pred[pid]-pred[nid] );
float g = loss.FirstOrderGradient( p, 1.0f );
float h = loss.SecondOrderGradient( p, 1.0f );
// accumulate gradient and hessian in both pid, and nid,
grad[pid] += g; grad[nid] -= g;
// take conservative update, scale hessian by 2
hess[pid] += 2.0f * h; hess[nid] += 2.0f * h;
}
inline static bool CmpFirst( const std::pair<float,unsigned> &a, const std::pair<float,unsigned> &b ){
return a.first > b.first;
}
private:
// fix weight of each list
float fix_list_weight;
LossType loss;
};
};
namespace regrank{
// simple pairwise rank
class LambdaRankObj : public IObjFunction{
public:
LambdaRankObj(void){}
virtual ~LambdaRankObj(){}
virtual void SetParam(const char *name, const char *val){
if (!strcmp("loss_type", name)) loss_.loss_type = atoi(val);
if (!strcmp("sampler", name)) sampler_.AssignSampler(atoi(val));
if (!strcmp("lambda", name)) lambda_ = atoi(val);
}
private:
int lambda_;
const static int PAIRWISE = 0;
const static int MAP = 1;
const static int NDCG = 2;
sample::PairSamplerWrapper sampler_;
LossType loss_;
/* \brief Sorted tuples of a group by the predictions, and
* the fields in the return tuples successively are predicions,
* labels, and the original index of the instance in the group
*/
inline std::vector< sample::Triple<float, float, int> > GetSortedTuple(const std::vector<float> &preds,
const std::vector<float> &labels,
const std::vector<unsigned> &group_index,
int group){
std::vector< sample::Triple<float, float, int> > sorted_triple;
for (int j = group_index[group]; j < group_index[group + 1]; j++){
sorted_triple.push_back(sample::Triple<float, float, int>(preds[j], labels[j], j));
}
std::sort(sorted_triple.begin(), sorted_triple.end(), sample::Triplef1Comparer);
return sorted_triple;
}
/*
* \brief Get the position of instances after sorted
* \param sorted_triple the fields successively are predicions,
* labels, and the original index of the instance in the group
* \param start the offset index of the group
* \return a vector indicating the new position of each instance after sorted,
* for example,[1,0] means that the second instance is put ahead after sorted
*/
inline std::vector<int> GetIndexMap(std::vector< sample::Triple<float, float, int> > sorted_triple, int start){
std::vector<int> index_remap;
index_remap.resize(sorted_triple.size());
for (int i = 0; i < sorted_triple.size(); i++){
index_remap[sorted_triple[i].f3_ - start] = i;
}
return index_remap;
}
/*
* \brief Obtain the delta MAP if trying to switch the positions of instances in index1 or index2
* in sorted triples
* \param sorted_triple the fields are predition,label,original index
* \param index1,index2 the instances switched
* \param map_acc The first field is the accumulated precision, the second field is the
* accumulated precision assuming a positive instance is missing,
* the third field is the accumulated precision assuming that one more positive
* instance is inserted, the fourth field is the accumulated positive instance count
*/
inline float GetLambdaMAP(const std::vector< sample::Triple<float, float, int> > sorted_triple,
int index1, int index2,
std::vector< sample::Quadruple<float, float, float, float> > map_acc){
if (index1 == index2 || sorted_triple[index1].f2_ == sorted_triple[index2].f2_) return 0.0;
if (index1 > index2) std::swap(index1, index2);
float original = map_acc[index2].f1_; // The accumulated precision in the interval [index1,index2]
if (index1 != 0) original -= map_acc[index1 - 1].f1_;
float changed = 0;
if (sorted_triple[index1].f2_ < sorted_triple[index2].f2_){
changed += map_acc[index2 - 1].f3_ - map_acc[index1].f3_;
changed += (map_acc[index1].f4_ + 1.0f) / (index1 + 1);
}
else{
changed += map_acc[index2 - 1].f2_ - map_acc[index1].f2_;
changed += map_acc[index2].f4_ / (index2 + 1);
}
float ans = (changed - original) / (map_acc[map_acc.size() - 1].f4_);
if (ans < 0) ans = -ans;
return ans;
}
/*
* \brief Obtain the delta NDCG if trying to switch the positions of instances in index1 or index2
* in sorted triples. Here DCG is calculated as sigma_i 2^rel_i/log(i + 1)
* \param sorted_triple the fields are predition,label,original index
* \param index1,index2 the instances switched
* \param the IDCG of the list
*/
inline float GetLambdaNDCG(const std::vector< sample::Triple<float, float, int> > sorted_triple,
int index1,
int index2, float IDCG){
float original = (1 << (int)sorted_triple[index1].f2_) / log(index1 + 2)
+ (1 << (int)sorted_triple[index2].f2_) / log(index2 + 2);
float changed = (1 << (int)sorted_triple[index2].f2_) / log(index1 + 2)
+ (1 << (int)sorted_triple[index1].f2_) / log(index2 + 2);
float ans = (original - changed) / IDCG;
if (ans < 0) ans = -ans;
return ans;
}
inline float GetIDCG(const std::vector< sample::Triple<float, float, int> > sorted_triple){
std::vector<float> labels;
for (int i = 0; i < sorted_triple.size(); i++){
labels.push_back(sorted_triple[i].f2_);
}
std::sort(labels.begin(), labels.end(), std::greater<float>());
return EvalNDCG::CalcDCG(labels);
}
/*
* \brief preprocessing results for calculating delta MAP
* \return The first field is the accumulated precision, the second field is the
* accumulated precision assuming a positive instance is missing,
* the third field is the accumulated precision assuming that one more positive
* instance is inserted, the fourth field is the accumulated positive instance count
*/
inline std::vector< sample::Quadruple<float, float, float, float> > GetMAPAcc(const std::vector< sample::Triple<float, float, int> > sorted_triple){
std::vector< sample::Quadruple<float, float, float, float> > map_acc;
float hit = 0, acc1 = 0, acc2 = 0, acc3 = 0;
for (int i = 1; i <= sorted_triple.size(); i++){
if (sorted_triple[i-1].f2_ == 1) {
hit++;
acc1 += hit / i;
acc2 += (hit - 1) / i;
acc3 += (hit + 1) / i;
}
map_acc.push_back(sample::Quadruple<float, float, float, float>(acc1, acc2, acc3, hit));
}
return map_acc;
}
inline float GetLambdaDelta(std::vector< sample::Triple<float, float, int> > sorted_triple,
int ins1,int ins2,
std::vector< sample::Quadruple<float, float, float, float> > map_acc,
float IDCG){
float delta = 0.0;
switch (lambda_){
case PAIRWISE: delta = 1.0; break;
case MAP: delta = GetLambdaMAP(sorted_triple, ins1, ins2, map_acc); break;
case NDCG: delta = GetLambdaNDCG(sorted_triple, ins1, ins2, IDCG); break;
default: utils::Error("Cannot find the specified loss type");
}
return delta;
}
inline void GetGroupGradient(const std::vector<float> &preds,
const std::vector<float> &labels,
const std::vector<unsigned> &group_index,
std::vector<float> &grad,
std::vector<float> &hess,
const sample::Pairs& pairs,
int group){
bool j_better;
float pred_diff, pred_diff_exp, delta;
float first_order_gradient, second_order_gradient;
std::vector< sample::Triple<float, float, int> > sorted_triple;
std::vector<int> index_remap;
std::vector< sample::Quadruple<float, float, float, float> > map_acc;
float IDCG;
// preparing data for lambda NDCG
if (lambda_ == NDCG){
sorted_triple = GetSortedTuple(preds, labels, group_index, group);
IDCG = GetIDCG(sorted_triple);
index_remap = GetIndexMap(sorted_triple, group_index[group]);
}
// preparing data for lambda MAP
else if (lambda_ == MAP){
sorted_triple = GetSortedTuple(preds, labels, group_index, group);
map_acc = GetMAPAcc(sorted_triple);
index_remap = GetIndexMap(sorted_triple, group_index[group]);
}
for (int j = group_index[group]; j < group_index[group + 1]; j++){
std::vector<int> pair_instance = pairs.GetPairs(j);
for (int k = 0; k < pair_instance.size(); k++){
j_better = labels[j] > labels[pair_instance[k]];
if (j_better){
delta = GetLambdaDelta(sorted_triple, index_remap[j - group_index[group]],
index_remap[pair_instance[k] - group_index[group]],map_acc,IDCG);
pred_diff = preds[j] - preds[pair_instance[k]];
pred_diff_exp = j_better ? expf(-pred_diff) : expf(pred_diff);
first_order_gradient = delta * FirstOrderGradient(pred_diff_exp);
second_order_gradient = 2 * delta * SecondOrderGradient(pred_diff_exp);
hess[j] += second_order_gradient;
grad[j] += first_order_gradient;
hess[pair_instance[k]] += second_order_gradient;
grad[pair_instance[k]] += -first_order_gradient;
}
}
}
}
inline float FirstOrderGradient(float pred_diff_exp) const {
return -pred_diff_exp / (1 + pred_diff_exp);
}
inline float SecondOrderGradient(float pred_diff_exp) const {
return pred_diff_exp / pow(1 + pred_diff_exp, 2);
}
public:
virtual void GetGradient(const std::vector<float>& preds,
const DMatrix::Info &info,
int iter,
std::vector<float> &grad,
std::vector<float> &hess) {
grad.resize(preds.size()); hess.resize(preds.size());
const std::vector<unsigned> &group_index = info.group_ptr;
utils::Assert(group_index.size() != 0 && group_index.back() == preds.size(), "rank loss must have group file");
for (int i = 0; i < group_index.size() - 1; i++){
sample::Pairs pairs = sampler_.GenPairs(preds, info.labels, group_index[i], group_index[i + 1]);
//pairs.GetPairs()
GetGroupGradient(preds, info.labels, group_index, grad, hess, pairs, i);
}
}
virtual const char* DefaultEvalMetric(void) {
return "auc";
}
};
};
};
#endif