xgboost/tracker/rabit_yarn.py
2015-03-08 23:51:42 -07:00

123 lines
5.7 KiB
Python
Executable File

#!/usr/bin/python
"""
This is a script to submit rabit job using hadoop streaming.
It will submit the rabit process as mappers of MapReduce.
"""
import argparse
import sys
import os
import time
import subprocess
import warnings
import rabit_tracker as tracker
WRAPPER_PATH = os.path.dirname(__file__) + '/../wrapper'
YARN_JAR_PATH = os.path.dirname(__file__) + '/../yarn/rabit-yarn.jar'
assert os.path.exists(YARN_JAR_PATH), ("cannot find \"%s\", please run build.sh on the yarn folder" % YARN_JAR_PATH)
hadoop_binary = 'hadoop'
# code
hadoop_home = os.getenv('HADOOP_HOME')
if hadoop_home != None:
if hadoop_binary == None:
hadoop_binary = hadoop_home + '/bin/hadoop'
assert os.path.exists(hadoop_binary), "HADOOP_HOME does not contain the hadoop binary"
parser = argparse.ArgumentParser(description='Rabit script to submit rabit jobs to Yarn.')
parser.add_argument('-n', '--nworker', required=True, type=int,
help = 'number of worker proccess to be launched')
parser.add_argument('-hip', '--host_ip', default='auto', type=str,
help = 'host IP address if cannot be automatically guessed, specify the IP of submission machine')
parser.add_argument('-v', '--verbose', default=0, choices=[0, 1], type=int,
help = 'print more messages into the console')
parser.add_argument('-ac', '--auto_file_cache', default=1, choices=[0, 1], type=int,
help = 'whether automatically cache the files in the command to hadoop localfile, this is on by default')
parser.add_argument('-f', '--files', default = [], action='append',
help = 'the cached file list in mapreduce,'\
' the submission script will automatically cache all the files which appears in command'\
' This will also cause rewritten of all the file names in the command to current path,'\
' for example `../../kmeans ../kmeans.conf` will be rewritten to `./kmeans kmeans.conf`'\
' because the two files are cached to running folder.'\
' You may need this option to cache additional files.'\
' You can also use it to manually cache files when auto_file_cache is off')
parser.add_argument('--jobname', default='auto', help = 'customize jobname in tracker')
parser.add_argument('--tempdir', default='/tmp', help = 'temporary directory in HDFS that can be used to store intermediate results')
parser.add_argument('--vcores', default = 1, type=int,
help = 'number of vcpores to request in each mapper, set it if each rabit job is multi-threaded')
parser.add_argument('-mem', '--memory_mb', default=1024, type=int,
help = 'maximum memory used by the process. Guide: set it large (near mapred.cluster.max.map.memory.mb)'\
'if you are running multi-threading rabit,'\
'so that each node can occupy all the mapper slots in a machine for maximum performance')
parser.add_argument('command', nargs='+',
help = 'command for rabit program')
args = parser.parse_args()
if args.jobname == 'auto':
args.jobname = ('Rabit[nworker=%d]:' % args.nworker) + args.command[0].split('/')[-1];
if hadoop_binary == None:
parser.add_argument('-hb', '--hadoop_binary', required = True,
help="path to hadoop binary file")
else:
parser.add_argument('-hb', '--hadoop_binary', default = hadoop_binary,
help="path to hadoop binary file")
args = parser.parse_args()
if args.jobname == 'auto':
args.jobname = ('Rabit[nworker=%d]:' % args.nworker) + args.command[0].split('/')[-1];
# detech hadoop version
(out, err) = subprocess.Popen('%s version' % args.hadoop_binary, shell = True, stdout=subprocess.PIPE).communicate()
out = out.split('\n')[0].split()
assert out[0] == 'Hadoop', 'cannot parse hadoop version string'
hadoop_version = out[1].split('.')
(classpath, err) = subprocess.Popen('%s classpath --glob' % args.hadoop_binary, shell = True, stdout=subprocess.PIPE).communicate()
if hadoop_version < 2:
print 'Current Hadoop Version is %s, rabit_yarn will need Yarn(Hadoop 2.0)' % out[1]
def submit_yarn(nworker, worker_args, worker_env):
fset = set([YARN_JAR_PATH])
if args.auto_file_cache != 0:
for i in range(len(args.command)):
f = args.command[i]
if os.path.exists(f):
fset.add(f)
if i == 0:
args.command[i] = './' + args.command[i].split('/')[-1]
else:
args.command[i] = args.command[i].split('/')[-1]
if args.command[0].endswith('.py'):
flst = [WRAPPER_PATH + '/rabit.py',
WRAPPER_PATH + '/librabit_wrapper.so',
WRAPPER_PATH + '/librabit_wrapper_mock.so']
for f in flst:
if os.path.exists(f):
fset.add(f)
cmd = 'java -cp `%s classpath`:%s org.apache.hadoop.yarn.rabit.Client ' % (args.hadoop_binary, YARN_JAR_PATH)
env = os.environ.copy()
for k, v in worker_env.items():
env[k] = str(v)
env['rabit_cpu_vcores'] = str(args.vcores)
env['rabit_memory_mb'] = str(args.memory_mb)
env['rabit_world_size'] = str(args.nworker)
if args.files != None:
for flst in args.files:
for f in flst.split('#'):
fset.add(f)
for f in fset:
cmd += ' -file %s' % f
cmd += ' -jobname %s ' % args.jobname
cmd += ' -tempdir %s ' % args.tempdir
cmd += (' '.join(args.command + worker_args))
print cmd
subprocess.check_call(cmd, shell = True, env = env)
tracker.submit(args.nworker, [], fun_submit = submit_yarn, verbose = args.verbose, hostIP = args.host_ip)