xgboost/R-package/man/xgb.load.Rd
Vadim Khotilovich 2b5b96d760 [R] various R code maintenance (#1964)
* [R] xgb.save must work when handle in nil but raw exists

* [R] print.xgb.Booster should still print other info when handle is nil

* [R] rename internal function xgb.Booster to xgb.Booster.handle to make its intent clear

* [R] rename xgb.Booster.check to xgb.Booster.complete and make it visible; more docs

* [R] storing evaluation_log should depend only on watchlist, not on verbose

* [R] reduce the excessive chattiness of unit tests

* [R] only disable some tests in windows when it's not 64-bit

* [R] clean-up xgb.DMatrix

* [R] test xgb.DMatrix loading from libsvm text file

* [R] store feature_names in xgb.Booster, use them from utility functions

* [R] remove non-functional co-occurence computation from xgb.importance

* [R] verbose=0 is enough without a callback

* [R] added forgotten xgb.Booster.complete.Rd; cran check fixes

* [R] update installation instructions
2017-01-21 11:22:46 -08:00

42 lines
1.2 KiB
R

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/xgb.load.R
\name{xgb.load}
\alias{xgb.load}
\title{Load xgboost model from binary file}
\usage{
xgb.load(modelfile)
}
\arguments{
\item{modelfile}{the name of the binary input file.}
}
\value{
An object of \code{xgb.Booster} class.
}
\description{
Load xgboost model from the binary model file.
}
\details{
The input file is expected to contain a model saved in an xgboost-internal binary format
using either \code{\link{xgb.save}} or \code{\link{cb.save.model}} in R, or using some
appropriate methods from other xgboost interfaces. E.g., a model trained in Python and
saved from there in xgboost format, could be loaded from R.
Note: a model saved as an R-object, has to be loaded using corresponding R-methods,
not \code{xgb.load}.
}
\examples{
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
xgb.save(bst, 'xgb.model')
bst <- xgb.load('xgb.model')
pred <- predict(bst, test$data)
}
\seealso{
\code{\link{xgb.save}}, \code{\link{xgb.Booster.complete}}.
}