xgboost/tests/python/test_early_stopping.py
2023-03-06 17:30:27 +08:00

120 lines
4.5 KiB
Python

import numpy as np
import pytest
import xgboost as xgb
from xgboost import testing as tm
from xgboost.testing.updater import get_basescore
rng = np.random.RandomState(1994)
class TestEarlyStopping:
@pytest.mark.skipif(**tm.no_sklearn())
def test_early_stopping_nonparallel(self):
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
digits = load_digits(n_class=2)
X = digits['data']
y = digits['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf1 = xgb.XGBClassifier(learning_rate=0.1)
clf1.fit(X_train, y_train, early_stopping_rounds=5, eval_metric="auc",
eval_set=[(X_test, y_test)])
clf2 = xgb.XGBClassifier(learning_rate=0.1)
clf2.fit(X_train, y_train, early_stopping_rounds=4, eval_metric="auc",
eval_set=[(X_test, y_test)])
# should be the same
assert clf1.best_score == clf2.best_score
assert clf1.best_score != 1
# check overfit
clf3 = xgb.XGBClassifier(
learning_rate=0.1,
eval_metric="auc",
early_stopping_rounds=10
)
clf3.fit(X_train, y_train, eval_set=[(X_test, y_test)])
base_score = get_basescore(clf3)
assert 0.53 > base_score > 0.5
clf3 = xgb.XGBClassifier(
learning_rate=0.1,
base_score=.5,
eval_metric="auc",
early_stopping_rounds=10
)
clf3.fit(X_train, y_train, eval_set=[(X_test, y_test)])
assert clf3.best_score == 1
def evalerror(self, preds, dtrain):
from sklearn.metrics import mean_squared_error
labels = dtrain.get_label()
preds = 1.0 / (1.0 + np.exp(-preds))
return 'rmse', mean_squared_error(labels, preds)
@staticmethod
def assert_metrics_length(cv, expected_length):
for key, value in cv.items():
assert len(value) == expected_length
@pytest.mark.skipif(**tm.no_sklearn())
def test_cv_early_stopping(self):
from sklearn.datasets import load_digits
digits = load_digits(n_class=2)
X = digits['data']
y = digits['target']
dm = xgb.DMatrix(X, label=y)
params = {'max_depth': 2, 'eta': 1, 'verbosity': 0,
'objective': 'binary:logistic', 'eval_metric': 'error'}
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
early_stopping_rounds=10)
self.assert_metrics_length(cv, 10)
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
early_stopping_rounds=5)
self.assert_metrics_length(cv, 3)
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
early_stopping_rounds=1)
self.assert_metrics_length(cv, 1)
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
feval=self.evalerror, early_stopping_rounds=10)
self.assert_metrics_length(cv, 10)
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
feval=self.evalerror, early_stopping_rounds=1)
self.assert_metrics_length(cv, 5)
cv = xgb.cv(params, dm, num_boost_round=10, nfold=10,
feval=self.evalerror, maximize=True,
early_stopping_rounds=1)
self.assert_metrics_length(cv, 1)
@pytest.mark.skipif(**tm.no_sklearn())
@pytest.mark.skipif(**tm.no_pandas())
def test_cv_early_stopping_with_multiple_eval_sets_and_metrics(self):
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
dm = xgb.DMatrix(X, label=y)
params = {'objective':'binary:logistic'}
metrics = [['auc'], ['error'], ['logloss'],
['logloss', 'auc'], ['logloss', 'error'], ['error', 'logloss']]
num_iteration_history = []
# If more than one metrics is given, early stopping should use the last metric
for i, m in enumerate(metrics):
result = xgb.cv(params, dm, num_boost_round=1000, nfold=5, stratified=True,
metrics=m, early_stopping_rounds=20, seed=42)
num_iteration_history.append(len(result))
df = result['test-{}-mean'.format(m[-1])]
# When early stopping is invoked, the last metric should be as best it can be.
if m[-1] == 'auc':
assert np.all(df <= df.iloc[-1])
else:
assert np.all(df >= df.iloc[-1])
assert num_iteration_history[:3] == num_iteration_history[3:]