xgboost/learner/objective-inl.hpp
2014-08-15 20:15:58 -07:00

138 lines
4.6 KiB
C++

#ifndef XGBOOST_LEARNER_OBJECTIVE_INL_HPP_
#define XGBOOST_LEARNER_OBJECTIVE_INL_HPP_
/*!
* \file objective-inl.hpp
* \brief objective function implementations
* \author Tianqi Chen, Kailong Chen
*/
#include <vector>
#include "./objective.h"
namespace xgboost {
namespace learner {
/*! \brief defines functions to calculate some commonly used functions */
struct LossType {
/*! \brief indicate which type we are using */
int loss_type;
// list of constants
static const int kLinearSquare = 0;
static const int kLogisticNeglik = 1;
static const int kLogisticClassify = 2;
static const int kLogisticRaw = 3;
/*!
* \brief transform the linear sum to prediction
* \param x linear sum of boosting ensemble
* \return transformed prediction
*/
inline float PredTransform(float x) const {
switch (loss_type) {
case kLogisticRaw:
case kLinearSquare: return x;
case kLogisticClassify:
case kLogisticNeglik: return 1.0f / (1.0f + expf(-x));
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculate first order gradient of loss, given transformed prediction
* \param predt transformed prediction
* \param label true label
* \return first order gradient
*/
inline float FirstOrderGradient(float predt, float label) const {
switch (loss_type) {
case kLinearSquare: return predt - label;
case kLogisticRaw: predt = 1.0f / (1.0f + expf(-predt));
case kLogisticClassify:
case kLogisticNeglik: return predt - label;
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief calculate second order gradient of loss, given transformed prediction
* \param predt transformed prediction
* \param label true label
* \return second order gradient
*/
inline float SecondOrderGradient(float predt, float label) const {
switch (loss_type) {
case kLinearSquare: return 1.0f;
case kLogisticRaw: predt = 1.0f / (1.0f + expf(-predt));
case kLogisticClassify:
case kLogisticNeglik: return predt * (1 - predt);
default: utils::Error("unknown loss_type"); return 0.0f;
}
}
/*!
* \brief transform probability value back to margin
*/
inline float ProbToMargin(float base_score) const {
if (loss_type == kLogisticRaw ||
loss_type == kLogisticClassify ||
loss_type == kLogisticNeglik ) {
utils::Check(base_score > 0.0f && base_score < 1.0f,
"base_score must be in (0,1) for logistic loss");
base_score = -logf(1.0f / base_score - 1.0f);
}
return base_score;
}
/*! \brief get default evaluation metric for the objective */
inline const char *DefaultEvalMetric(void) const {
if (loss_type == kLogisticClassify) return "error";
if (loss_type == kLogisticRaw) return "auc";
return "rmse";
}
};
/*! \brief objective function that only need to */
class RegLossObj : public IObjFunction{
public:
explicit RegLossObj(int loss_type) {
loss.loss_type = loss_type;
scale_pos_weight = 1.0f;
}
virtual ~RegLossObj(void) {}
virtual void SetParam(const char *name, const char *val) {
if (!strcmp("scale_pos_weight", name)) {
scale_pos_weight = static_cast<float>(atof(val));
}
}
virtual void GetGradient(const std::vector<float>& preds,
const MetaInfo &info,
int iter,
std::vector<bst_gpair> *out_gpair) {
utils::Check(preds.size() == info.labels.size(),
"labels are not correctly provided");
std::vector<bst_gpair> &gpair = *out_gpair;
gpair.resize(preds.size());
// start calculating gradient
const unsigned ndata = static_cast<unsigned>(preds.size());
#pragma omp parallel for schedule(static)
for (unsigned j = 0; j < ndata; ++j) {
float p = loss.PredTransform(preds[j]);
float w = info.GetWeight(j);
if (info.labels[j] == 1.0f) w *= scale_pos_weight;
gpair[j] = bst_gpair(loss.FirstOrderGradient(p, info.labels[j]) * w,
loss.SecondOrderGradient(p, info.labels[j]) * w);
}
}
virtual const char* DefaultEvalMetric(void) {
return loss.DefaultEvalMetric();
}
virtual void PredTransform(std::vector<float> *io_preds) {
std::vector<float> &preds = *io_preds;
const unsigned ndata = static_cast<unsigned>(preds.size());
#pragma omp parallel for schedule(static)
for (unsigned j = 0; j < ndata; ++j) {
preds[j] = loss.PredTransform(preds[j]);
}
}
protected:
float scale_pos_weight;
LossType loss;
};
} // namespace learner
} // namespace xgboost
#endif // XGBOOST_LEARNER_OBJECTIVE_INL_HPP_