* Multi-GPU support in GPUPredictor. - GPUPredictor is multi-GPU - removed DeviceMatrix, as it has been made obsolete by using HostDeviceVector in DMatrix * Replaced pointers with spans in GPUPredictor. * Added a multi-GPU predictor test. * Fix multi-gpu test. * Fix n_rows < n_gpus. * Reinitialize shards when GPUSet is changed. * Tests range of data. * Remove commented code. * Remove commented code.
122 lines
4.4 KiB
Plaintext
122 lines
4.4 KiB
Plaintext
|
|
/*!
|
|
* Copyright 2017 XGBoost contributors
|
|
*/
|
|
#include <xgboost/c_api.h>
|
|
#include <xgboost/predictor.h>
|
|
#include "gtest/gtest.h"
|
|
#include "../helpers.h"
|
|
|
|
namespace xgboost {
|
|
namespace predictor {
|
|
|
|
TEST(gpu_predictor, Test) {
|
|
std::unique_ptr<Predictor> gpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor"));
|
|
std::unique_ptr<Predictor> cpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor"));
|
|
|
|
gpu_predictor->Init({}, {});
|
|
cpu_predictor->Init({}, {});
|
|
|
|
std::vector<std::unique_ptr<RegTree>> trees;
|
|
trees.push_back(std::unique_ptr<RegTree>(new RegTree()));
|
|
trees.back()->InitModel();
|
|
(*trees.back())[0].SetLeaf(1.5f);
|
|
(*trees.back()).Stat(0).sum_hess = 1.0f;
|
|
gbm::GBTreeModel model(0.5);
|
|
model.CommitModel(std::move(trees), 0);
|
|
model.param.num_output_group = 1;
|
|
|
|
int n_row = 5;
|
|
int n_col = 5;
|
|
|
|
auto dmat = CreateDMatrix(n_row, n_col, 0);
|
|
|
|
// Test predict batch
|
|
HostDeviceVector<float> gpu_out_predictions;
|
|
HostDeviceVector<float> cpu_out_predictions;
|
|
gpu_predictor->PredictBatch((*dmat).get(), &gpu_out_predictions, model, 0);
|
|
cpu_predictor->PredictBatch((*dmat).get(), &cpu_out_predictions, model, 0);
|
|
std::vector<float>& gpu_out_predictions_h = gpu_out_predictions.HostVector();
|
|
std::vector<float>& cpu_out_predictions_h = cpu_out_predictions.HostVector();
|
|
float abs_tolerance = 0.001;
|
|
for (int i = 0; i < gpu_out_predictions.Size(); i++) {
|
|
ASSERT_NEAR(gpu_out_predictions_h[i], cpu_out_predictions_h[i], abs_tolerance);
|
|
}
|
|
// Test predict instance
|
|
const auto &batch = *(*dmat)->GetRowBatches().begin();
|
|
for (int i = 0; i < batch.Size(); i++) {
|
|
std::vector<float> gpu_instance_out_predictions;
|
|
std::vector<float> cpu_instance_out_predictions;
|
|
cpu_predictor->PredictInstance(batch[i], &cpu_instance_out_predictions,
|
|
model);
|
|
gpu_predictor->PredictInstance(batch[i], &gpu_instance_out_predictions,
|
|
model);
|
|
ASSERT_EQ(gpu_instance_out_predictions[0], cpu_instance_out_predictions[0]);
|
|
}
|
|
|
|
// Test predict leaf
|
|
std::vector<float> gpu_leaf_out_predictions;
|
|
std::vector<float> cpu_leaf_out_predictions;
|
|
cpu_predictor->PredictLeaf((*dmat).get(), &cpu_leaf_out_predictions, model);
|
|
gpu_predictor->PredictLeaf((*dmat).get(), &gpu_leaf_out_predictions, model);
|
|
for (int i = 0; i < gpu_leaf_out_predictions.size(); i++) {
|
|
ASSERT_EQ(gpu_leaf_out_predictions[i], cpu_leaf_out_predictions[i]);
|
|
}
|
|
|
|
// Test predict contribution
|
|
std::vector<float> gpu_out_contribution;
|
|
std::vector<float> cpu_out_contribution;
|
|
cpu_predictor->PredictContribution((*dmat).get(), &cpu_out_contribution, model);
|
|
gpu_predictor->PredictContribution((*dmat).get(), &gpu_out_contribution, model);
|
|
for (int i = 0; i < gpu_out_contribution.size(); i++) {
|
|
ASSERT_EQ(gpu_out_contribution[i], cpu_out_contribution[i]);
|
|
}
|
|
|
|
delete dmat;
|
|
}
|
|
|
|
// multi-GPU predictor test
|
|
TEST(gpu_predictor, MGPU_Test) {
|
|
std::unique_ptr<Predictor> gpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("gpu_predictor"));
|
|
std::unique_ptr<Predictor> cpu_predictor =
|
|
std::unique_ptr<Predictor>(Predictor::Create("cpu_predictor"));
|
|
|
|
gpu_predictor->Init({std::pair<std::string, std::string>("n_gpus", "-1")}, {});
|
|
cpu_predictor->Init({}, {});
|
|
|
|
for (size_t i = 1; i < 33; i *= 2) {
|
|
int n_row = i, n_col = i;
|
|
auto dmat = CreateDMatrix(n_row, n_col, 0);
|
|
|
|
std::vector<std::unique_ptr<RegTree>> trees;
|
|
trees.push_back(std::unique_ptr<RegTree>(new RegTree()));
|
|
trees.back()->InitModel();
|
|
(*trees.back())[0].SetLeaf(1.5f);
|
|
(*trees.back()).Stat(0).sum_hess = 1.0f;
|
|
gbm::GBTreeModel model(0.5);
|
|
model.CommitModel(std::move(trees), 0);
|
|
model.param.num_output_group = 1;
|
|
|
|
// Test predict batch
|
|
HostDeviceVector<float> gpu_out_predictions;
|
|
HostDeviceVector<float> cpu_out_predictions;
|
|
|
|
gpu_predictor->PredictBatch((*dmat).get(), &gpu_out_predictions, model, 0);
|
|
cpu_predictor->PredictBatch((*dmat).get(), &cpu_out_predictions, model, 0);
|
|
|
|
std::vector<float>& gpu_out_predictions_h = gpu_out_predictions.HostVector();
|
|
std::vector<float>& cpu_out_predictions_h = cpu_out_predictions.HostVector();
|
|
float abs_tolerance = 0.001;
|
|
for (int i = 0; i < gpu_out_predictions.Size(); i++) {
|
|
ASSERT_NEAR(gpu_out_predictions_h[i], cpu_out_predictions_h[i], abs_tolerance);
|
|
}
|
|
delete dmat;
|
|
}
|
|
}
|
|
|
|
} // namespace predictor
|
|
} // namespace xgboost
|