* Robust regularization of AFT gradient and hessian * Fix AFT doc; expose it to tutorial TOC * Apply robust regularization to uncensored case too * Revise unit test slightly * Fix lint * Update test_survival.py * Use GradientPairPrecise * Remove unused variables
265 lines
9.7 KiB
C++
265 lines
9.7 KiB
C++
/*!
|
|
* Copyright 2019 by Contributors
|
|
* \file survival_util.cc
|
|
* \brief Utility functions, useful for implementing objective and metric functions for survival
|
|
* analysis
|
|
* \author Avinash Barnwal, Hyunsu Cho and Toby Hocking
|
|
*/
|
|
|
|
#include <dmlc/registry.h>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include "survival_util.h"
|
|
|
|
/*
|
|
- Formulas are motivated from document -
|
|
http://members.cbio.mines-paristech.fr/~thocking/survival.pdf
|
|
- Detailed Derivation of Loss/Gradient/Hessian -
|
|
https://github.com/avinashbarnwal/GSOC-2019/blob/master/doc/Accelerated_Failure_Time.pdf
|
|
*/
|
|
|
|
namespace {
|
|
|
|
// Allowable range for gradient and hessian. Used for regularization
|
|
constexpr double kMinGradient = -15.0;
|
|
constexpr double kMaxGradient = 15.0;
|
|
constexpr double kMinHessian = 1e-16; // Ensure that no data point gets zero hessian
|
|
constexpr double kMaxHessian = 15.0;
|
|
|
|
constexpr double kEps = 1e-12; // A denomitor in a fraction should not be too small
|
|
|
|
// Clip (limit) x to fit range [x_min, x_max].
|
|
// If x < x_min, return x_min; if x > x_max, return x_max; if x_min <= x <= x_max, return x.
|
|
// This function assumes x_min < x_max; behavior is undefined if this assumption does not hold.
|
|
inline double Clip(double x, double x_min, double x_max) {
|
|
if (x < x_min) {
|
|
return x_min;
|
|
}
|
|
if (x > x_max) {
|
|
return x_max;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
using xgboost::common::ProbabilityDistributionType;
|
|
|
|
enum class CensoringType : uint8_t {
|
|
kUncensored, kRightCensored, kLeftCensored, kIntervalCensored
|
|
};
|
|
|
|
using xgboost::GradientPairPrecise;
|
|
|
|
inline GradientPairPrecise GetLimitAtInfPred(ProbabilityDistributionType dist_type,
|
|
CensoringType censor_type,
|
|
double sign, double sigma) {
|
|
switch (censor_type) {
|
|
case CensoringType::kUncensored:
|
|
switch (dist_type) {
|
|
case ProbabilityDistributionType::kNormal:
|
|
return sign ? GradientPairPrecise{ kMinGradient, 1.0 / (sigma * sigma) }
|
|
: GradientPairPrecise{ kMaxGradient, 1.0 / (sigma * sigma) };
|
|
case ProbabilityDistributionType::kLogistic:
|
|
return sign ? GradientPairPrecise{ -1.0 / sigma, kMinHessian }
|
|
: GradientPairPrecise{ 1.0 / sigma, kMinHessian };
|
|
case ProbabilityDistributionType::kExtreme:
|
|
return sign ? GradientPairPrecise{ kMinGradient, kMaxHessian }
|
|
: GradientPairPrecise{ 1.0 / sigma, kMinHessian };
|
|
default:
|
|
LOG(FATAL) << "Unknown distribution type";
|
|
}
|
|
case CensoringType::kRightCensored:
|
|
switch (dist_type) {
|
|
case ProbabilityDistributionType::kNormal:
|
|
return sign ? GradientPairPrecise{ kMinGradient, 1.0 / (sigma * sigma) }
|
|
: GradientPairPrecise{ 0.0, kMinHessian };
|
|
case ProbabilityDistributionType::kLogistic:
|
|
return sign ? GradientPairPrecise{ -1.0 / sigma, kMinHessian }
|
|
: GradientPairPrecise{ 0.0, kMinHessian };
|
|
case ProbabilityDistributionType::kExtreme:
|
|
return sign ? GradientPairPrecise{ kMinGradient, kMaxHessian }
|
|
: GradientPairPrecise{ 0.0, kMinHessian };
|
|
default:
|
|
LOG(FATAL) << "Unknown distribution type";
|
|
}
|
|
case CensoringType::kLeftCensored:
|
|
switch (dist_type) {
|
|
case ProbabilityDistributionType::kNormal:
|
|
return sign ? GradientPairPrecise{ 0.0, kMinHessian }
|
|
: GradientPairPrecise{ kMaxGradient, 1.0 / (sigma * sigma) };
|
|
case ProbabilityDistributionType::kLogistic:
|
|
return sign ? GradientPairPrecise{ 0.0, kMinHessian }
|
|
: GradientPairPrecise{ 1.0 / sigma, kMinHessian };
|
|
case ProbabilityDistributionType::kExtreme:
|
|
return sign ? GradientPairPrecise{ 0.0, kMinHessian }
|
|
: GradientPairPrecise{ 1.0 / sigma, kMinHessian };
|
|
default:
|
|
LOG(FATAL) << "Unknown distribution type";
|
|
}
|
|
case CensoringType::kIntervalCensored:
|
|
switch (dist_type) {
|
|
case ProbabilityDistributionType::kNormal:
|
|
return sign ? GradientPairPrecise{ kMinGradient, 1.0 / (sigma * sigma) }
|
|
: GradientPairPrecise{ kMaxGradient, 1.0 / (sigma * sigma) };
|
|
case ProbabilityDistributionType::kLogistic:
|
|
return sign ? GradientPairPrecise{ -1.0 / sigma, kMinHessian }
|
|
: GradientPairPrecise{ 1.0 / sigma, kMinHessian };
|
|
case ProbabilityDistributionType::kExtreme:
|
|
return sign ? GradientPairPrecise{ kMinGradient, kMaxHessian }
|
|
: GradientPairPrecise{ 1.0 / sigma, kMinHessian };
|
|
default:
|
|
LOG(FATAL) << "Unknown distribution type";
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unknown censoring type";
|
|
}
|
|
|
|
return { 0.0, 0.0 };
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
namespace xgboost {
|
|
namespace common {
|
|
|
|
DMLC_REGISTER_PARAMETER(AFTParam);
|
|
|
|
double AFTLoss::Loss(double y_lower, double y_upper, double y_pred, double sigma) {
|
|
const double log_y_lower = std::log(y_lower);
|
|
const double log_y_upper = std::log(y_upper);
|
|
|
|
double cost;
|
|
|
|
if (y_lower == y_upper) { // uncensored
|
|
const double z = (log_y_lower - y_pred) / sigma;
|
|
const double pdf = dist_->PDF(z);
|
|
// Regularize the denominator with eps, to avoid INF or NAN
|
|
cost = -std::log(std::max(pdf / (sigma * y_lower), kEps));
|
|
} else { // censored; now check what type of censorship we have
|
|
double z_u, z_l, cdf_u, cdf_l;
|
|
if (std::isinf(y_upper)) { // right-censored
|
|
cdf_u = 1;
|
|
} else { // left-censored or interval-censored
|
|
z_u = (log_y_upper - y_pred) / sigma;
|
|
cdf_u = dist_->CDF(z_u);
|
|
}
|
|
if (std::isinf(y_lower)) { // left-censored
|
|
cdf_l = 0;
|
|
} else { // right-censored or interval-censored
|
|
z_l = (log_y_lower - y_pred) / sigma;
|
|
cdf_l = dist_->CDF(z_l);
|
|
}
|
|
// Regularize the denominator with eps, to avoid INF or NAN
|
|
cost = -std::log(std::max(cdf_u - cdf_l, kEps));
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
|
|
double AFTLoss::Gradient(double y_lower, double y_upper, double y_pred, double sigma) {
|
|
const double log_y_lower = std::log(y_lower);
|
|
const double log_y_upper = std::log(y_upper);
|
|
double numerator, denominator, gradient; // numerator and denominator of gradient
|
|
CensoringType censor_type;
|
|
bool z_sign; // sign of z-score
|
|
|
|
if (y_lower == y_upper) { // uncensored
|
|
const double z = (log_y_lower - y_pred) / sigma;
|
|
const double pdf = dist_->PDF(z);
|
|
const double grad_pdf = dist_->GradPDF(z);
|
|
censor_type = CensoringType::kUncensored;
|
|
numerator = grad_pdf;
|
|
denominator = sigma * pdf;
|
|
z_sign = (z > 0);
|
|
} else { // censored; now check what type of censorship we have
|
|
double z_u = 0.0, z_l = 0.0, pdf_u, pdf_l, cdf_u, cdf_l;
|
|
censor_type = CensoringType::kIntervalCensored;
|
|
if (std::isinf(y_upper)) { // right-censored
|
|
pdf_u = 0;
|
|
cdf_u = 1;
|
|
censor_type = CensoringType::kRightCensored;
|
|
} else { // interval-censored or left-censored
|
|
z_u = (log_y_upper - y_pred) / sigma;
|
|
pdf_u = dist_->PDF(z_u);
|
|
cdf_u = dist_->CDF(z_u);
|
|
}
|
|
if (std::isinf(y_lower)) { // left-censored
|
|
pdf_l = 0;
|
|
cdf_l = 0;
|
|
censor_type = CensoringType::kLeftCensored;
|
|
} else { // interval-censored or right-censored
|
|
z_l = (log_y_lower - y_pred) / sigma;
|
|
pdf_l = dist_->PDF(z_l);
|
|
cdf_l = dist_->CDF(z_l);
|
|
}
|
|
z_sign = (z_u > 0 || z_l > 0);
|
|
numerator = pdf_u - pdf_l;
|
|
denominator = sigma * (cdf_u - cdf_l);
|
|
}
|
|
gradient = numerator / denominator;
|
|
if (denominator < kEps && (std::isnan(gradient) || std::isinf(gradient))) {
|
|
gradient = GetLimitAtInfPred(dist_type_, censor_type, z_sign, sigma).GetGrad();
|
|
}
|
|
|
|
return Clip(gradient, kMinGradient, kMaxGradient);
|
|
}
|
|
|
|
double AFTLoss::Hessian(double y_lower, double y_upper, double y_pred, double sigma) {
|
|
const double log_y_lower = std::log(y_lower);
|
|
const double log_y_upper = std::log(y_upper);
|
|
double numerator, denominator, hessian; // numerator and denominator of hessian
|
|
CensoringType censor_type;
|
|
bool z_sign; // sign of z-score
|
|
|
|
if (y_lower == y_upper) { // uncensored
|
|
const double z = (log_y_lower - y_pred) / sigma;
|
|
const double pdf = dist_->PDF(z);
|
|
const double grad_pdf = dist_->GradPDF(z);
|
|
const double hess_pdf = dist_->HessPDF(z);
|
|
censor_type = CensoringType::kUncensored;
|
|
numerator = -(pdf * hess_pdf - grad_pdf * grad_pdf);
|
|
denominator = sigma * sigma * pdf * pdf;
|
|
z_sign = (z > 0);
|
|
} else { // censored; now check what type of censorship we have
|
|
double z_u = 0.0, z_l = 0.0, grad_pdf_u, grad_pdf_l, pdf_u, pdf_l, cdf_u, cdf_l;
|
|
censor_type = CensoringType::kIntervalCensored;
|
|
if (std::isinf(y_upper)) { // right-censored
|
|
pdf_u = 0;
|
|
cdf_u = 1;
|
|
grad_pdf_u = 0;
|
|
censor_type = CensoringType::kRightCensored;
|
|
} else { // interval-censored or left-censored
|
|
z_u = (log_y_upper - y_pred) / sigma;
|
|
pdf_u = dist_->PDF(z_u);
|
|
cdf_u = dist_->CDF(z_u);
|
|
grad_pdf_u = dist_->GradPDF(z_u);
|
|
}
|
|
if (std::isinf(y_lower)) { // left-censored
|
|
pdf_l = 0;
|
|
cdf_l = 0;
|
|
grad_pdf_l = 0;
|
|
censor_type = CensoringType::kLeftCensored;
|
|
} else { // interval-censored or right-censored
|
|
z_l = (log_y_lower - y_pred) / sigma;
|
|
pdf_l = dist_->PDF(z_l);
|
|
cdf_l = dist_->CDF(z_l);
|
|
grad_pdf_l = dist_->GradPDF(z_l);
|
|
}
|
|
const double cdf_diff = cdf_u - cdf_l;
|
|
const double pdf_diff = pdf_u - pdf_l;
|
|
const double grad_diff = grad_pdf_u - grad_pdf_l;
|
|
const double sqrt_denominator = sigma * cdf_diff;
|
|
z_sign = (z_u > 0 || z_l > 0);
|
|
numerator = -(cdf_diff * grad_diff - pdf_diff * pdf_diff);
|
|
denominator = sqrt_denominator * sqrt_denominator;
|
|
}
|
|
hessian = numerator / denominator;
|
|
if (denominator < kEps && (std::isnan(hessian) || std::isinf(hessian))) {
|
|
hessian = GetLimitAtInfPred(dist_type_, censor_type, z_sign, sigma).GetHess();
|
|
}
|
|
|
|
return Clip(hessian, kMinHessian, kMaxHessian);
|
|
}
|
|
|
|
} // namespace common
|
|
} // namespace xgboost
|